Spelling suggestions: "subject:"desvio média"" "subject:"lesvio média""
1 |
A distribuição Kumaraswamy normal: propriedades, modelos de regressão linear e diagnóstico / The Kumaraswamy normal distribution: properties, linear regression models and diagnosisMachado, Elizabete Cardoso 28 May 2019 (has links)
No presente trabalho, são estudadas propriedades de uma distribuição pertencente à classe de distribuições Kumaraswamy generalizadas, denominada Kumaraswamy normal, formulada a partir da distribuição Kumaraswamy e da distribuição normal. Algumas propriedades estudadas são: expansão da função densidade de probabilidade em série de potências, função geradora de momentos, momentos, função quantílica, entropia de Shannon e de Rényi e estatísticas de ordem. São construídos dois modelos de regressão lineares do tipo localização-escala para a distribuição Kumaraswamy normal, um para dados sem censura e o outro com a presença de observações censuradas. Os parâmetros dos modelos são estimados pelo método de máxima verossimilhança e algumas medidas de diagnóstico, como influência global, influência local e resíduos são desenvolvidos. Para cada modelo de regressão é realizada uma aplicação a um conjunto de dados reais. / In this work, properties of a distribution belonging to the class of generalized Kumaraswamy distributions, called Kumaraswamy normal, are studied. The Kumaraswamy normal distribution is formulated from the Kumaraswamy distribution and from the normal distribution. Some properties studied are: expansion of the probability density function in power series, moment generating function, moments, quantile function, Shannon and Rényi entropy, and order statistics. Two location-scale linear regression models are constructed for the Kumaraswamy-normal distribution, one for datas uncensored and the other with the presence of censoreds observations. The parameters of these models are estimated by the maximum likelihood method and some diagnostic measures such as global influence, local influence and residuals are developed. For each regression model an application is made to a real data set.
|
2 |
Otimização estocástica na programação de bombas em redes de abastecimento urbano / Stochastic optimization in the pump scheduling in urban supply networksMartinez, Jonathan Justen de La Vega 14 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:53:32Z (GMT). No. of bitstreams: 1
MARTINEZ_Jonathan_2014.pdf: 11989383 bytes, checksum: 96fb53d9544014ea55b1e53ee779c134 (MD5)
Previous issue date: 2014-03-14 / Financiadora de Estudos e Projetos / This study presents a pump scheduling problem for the capture, transfer and storage of water supply systems in urban networks, whose objective is to minimize the electricity cost associated to the pumping operations. To deal with the dynamic and random nature of the water-demand, we propose two-stage stochastic programming with recourse models, where the random variables are represented by a finite and discrete set of realizations or scenarios. The developed mathematical models are extensions of previous deterministic models of the literature and they reflect the basic assumption that a fixed cost could be incurred by the turn on/ turn off activities of the hydraulic pumps. In order to control violations of the water-demand constraints in the presence of multiple different scenarios, we also consider a robustness technique in an attempt to obtain almost feasible solutions. Last, but not least, we adopt a risk-aversion criteria so-called mean absolute deviation to obtain second-stage costs less dependent on the realizations of the scenarios. The scenarios were generated according to a Monte-Carlo simulation procedure that may use any probability distributions to produce the empirical probabilities of the random variables. As the proposed pump scheduling problem with fixed cost is a two-stage stochastic mixed 0 − 1 program, we develop a efficient hybrid heuristic to obtain good-quality solutions of practical instances in a plausible running time. Overall results evidence the stability of the scenario generation method, the sensitivity of the solution according to the key parameters of the mathematical model, and the efficiency of the heuristic in solving large instances. Finally, we show that is possible to save resources by solving the stochastic programming model instead of adopting simpler approaches based on the expected value. / Esse estudo apresenta um problema de programação de bombas para a captação, armazenamento e transferência de água em sistemas de abastecimentos de água em redes urbanas, cujo objetivo é minimizar o custo de energia elétrica associado às operações de bombeamento. Para lidar com a natureza dinâmica e aleatória da demanda por água, foram propostos modelos de programação estocástica de dois estágios com recurso, em que a variável aleatória é representada por um conjunto finito de realizações ou cenários. Os modelos matemáticos desenvolvidos são extensões de modelos determinísticos da literatura e refletem a suposição básica de que é possível se incorrer em um custo fixo pelas atividades de liga/desliga das bombas hidráulicas. Para controlar as violações das restrições de demanda por água na presença de múltiplos cenários diferentes, considerou-se também uma técnica de robustez na tentativa de gerar soluções quase factíveis. Por último, mas não menos importante, adotou-se um critério de aversão ao risco denominado desvio médio absoluto para obter custos de segundo estágio menos dependentes das realizações dos cenários. Os cenários foram gerados de acordo com um procedimento baseado em simulação Monte-Carlo que pode utilizar qualquer distribuição de probabilidade para produzir as probabilidades empíricas das variáveis aleatórias. Como o problema de programação de bombas com custo fixo proposto é um programa inteiro misto 0−1 estocástico, desenvolve-se uma heurística híbrida eficiente para obter soluções de boa qualidade de instâncias práticas em um tempo computacional plausível. Os resultados evidenciam a estabilidade do método de geração de cenários, a sensibilidade da solução de acordo com parâmetros-chave do modelo matemático, e a eficiência da heurística na resolução de instâncias de grande porte. Finalmente, foi demonstrado que é possível poupar recursos pela resolução do modelo de programação estocástica, em vez de adotar abordagens mais simples baseadas no valor esperado.
|
Page generated in 0.0405 seconds