• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detecção de anomalias utilizando métodos paramétricos e múltiplos classificadores / Anomaly detection using parametric methods and multiple classifiers

Costa, Gabriel de Barros Paranhos da 25 August 2014 (has links)
Anomalias ou outliers são exemplos ou grupo de exemplos que apresentam comportamento diferente do esperado. Na prática,esses exemplos podem representar doenças em um indivíduo ou em uma população, além de outros eventos como fraudes em operações bancárias e falhas em sistemas. Diversas técnicas existentes buscam identificar essas anomalias, incluindo adaptações de métodos de classificação e métodos estatísticos. Os principais desafios são o desbalanceamento do número de exemplos em cada uma das classes e a definição do comportamento normal associada à formalização de um modelo para esse comportamento. Nesta dissertação propõe-se a utilização de um novo espaço para realizar a detecção,esse espaço é chamado espaço de parâmetros. Um espaço de parâmetros é criado utilizando parâmetros estimados a partir da concatenação(encadeamento) de dois exemplos. Apresenta-se,então,um novo framework para realizar a detecção de anomalias através da fusão de detectores que utilizam fechos convexos em múltiplos espaços de parâmetros para realizar a detecção. O método é considerado um framework pois é possível escolher quais os espaços de parâmetros que serão utilizados pelo método de acordo como comportamento da base de dados alvo. Nesse trabalho utilizou-se,para experimentos,dois conjuntos de parâmetros(média e desvio padrão; média, variância, obliquidade e curtose) e os resultados obtidos foram comparados com alguns métodos comumente utilizados para detecção de anomalias. Os resultados atingidos foram comparáveis ou melhores aos obtidos pelos demais métodos. Além disso, acredita-se que a utilização de espaços de parâmetros cria uma grande flexibilidade do método proposto, já que o usuário pode escolher um espaço de parâmetros que se adeque a sua aplicação. Tanto a flexibilidade quanto a extensibilidade disponibilizada pelo espaço de parâmetros, em conjunto como bom desempenho do método proposto nos experimentos realizados, tornam atrativa a utilização de espaços de parâmetros e, mais especificamente, dos métodos apresentados na solução de problemas de detecção de anomalias. / Anomalies or outliers are examples or group of examples that have a behaviour different from the expected. These examples may represent diseases in individuals or populations,as well as other events such as fraud and failures in banking systems.Several existing techniques seek to identify these anomalies, including adaptations of classification methods, statistical methods and methods based on information theory. The main challenges are that the number of samples of each class is unbalanced, the cases when anomalies are disguised among normal samples and the definition of normal behaviour associated with the formalization of a model for this behaviour. In this dissertation,we propose the use of a new space to helpwith the detection task, this space is called parameter space. We also present a new framework to perform anomaly detection by using the fusion of convex hulls in multiple parameter spaces to perform the detection.The method is considered a framework because it is possible to choose which parameter spaces will be used by the method according to the behaviour of the target data set.For the experiments, two parameter spaces were used (mean and standard deviation; mean, variance, skewness and kurtosis) and the results were compared to some commonly used anomaly detection methods. The results achieved were comparable or better than those obtained by the other methods. Furthermore, we believe that a parameter space created great fexibility for the proposed method, since it allowed the user to choose a parameter space that best models the application. Both the flexibility and extensibility provided by the use of parameter spaces, together with the good performance achieved by the proposed method in the experiments, make parameter spaces and, more specifically, the proposed methods appealing when solving anomaly detection problems.
2

Detecção de anomalias utilizando métodos paramétricos e múltiplos classificadores / Anomaly detection using parametric methods and multiple classifiers

Gabriel de Barros Paranhos da Costa 25 August 2014 (has links)
Anomalias ou outliers são exemplos ou grupo de exemplos que apresentam comportamento diferente do esperado. Na prática,esses exemplos podem representar doenças em um indivíduo ou em uma população, além de outros eventos como fraudes em operações bancárias e falhas em sistemas. Diversas técnicas existentes buscam identificar essas anomalias, incluindo adaptações de métodos de classificação e métodos estatísticos. Os principais desafios são o desbalanceamento do número de exemplos em cada uma das classes e a definição do comportamento normal associada à formalização de um modelo para esse comportamento. Nesta dissertação propõe-se a utilização de um novo espaço para realizar a detecção,esse espaço é chamado espaço de parâmetros. Um espaço de parâmetros é criado utilizando parâmetros estimados a partir da concatenação(encadeamento) de dois exemplos. Apresenta-se,então,um novo framework para realizar a detecção de anomalias através da fusão de detectores que utilizam fechos convexos em múltiplos espaços de parâmetros para realizar a detecção. O método é considerado um framework pois é possível escolher quais os espaços de parâmetros que serão utilizados pelo método de acordo como comportamento da base de dados alvo. Nesse trabalho utilizou-se,para experimentos,dois conjuntos de parâmetros(média e desvio padrão; média, variância, obliquidade e curtose) e os resultados obtidos foram comparados com alguns métodos comumente utilizados para detecção de anomalias. Os resultados atingidos foram comparáveis ou melhores aos obtidos pelos demais métodos. Além disso, acredita-se que a utilização de espaços de parâmetros cria uma grande flexibilidade do método proposto, já que o usuário pode escolher um espaço de parâmetros que se adeque a sua aplicação. Tanto a flexibilidade quanto a extensibilidade disponibilizada pelo espaço de parâmetros, em conjunto como bom desempenho do método proposto nos experimentos realizados, tornam atrativa a utilização de espaços de parâmetros e, mais especificamente, dos métodos apresentados na solução de problemas de detecção de anomalias. / Anomalies or outliers are examples or group of examples that have a behaviour different from the expected. These examples may represent diseases in individuals or populations,as well as other events such as fraud and failures in banking systems.Several existing techniques seek to identify these anomalies, including adaptations of classification methods, statistical methods and methods based on information theory. The main challenges are that the number of samples of each class is unbalanced, the cases when anomalies are disguised among normal samples and the definition of normal behaviour associated with the formalization of a model for this behaviour. In this dissertation,we propose the use of a new space to helpwith the detection task, this space is called parameter space. We also present a new framework to perform anomaly detection by using the fusion of convex hulls in multiple parameter spaces to perform the detection.The method is considered a framework because it is possible to choose which parameter spaces will be used by the method according to the behaviour of the target data set.For the experiments, two parameter spaces were used (mean and standard deviation; mean, variance, skewness and kurtosis) and the results were compared to some commonly used anomaly detection methods. The results achieved were comparable or better than those obtained by the other methods. Furthermore, we believe that a parameter space created great fexibility for the proposed method, since it allowed the user to choose a parameter space that best models the application. Both the flexibility and extensibility provided by the use of parameter spaces, together with the good performance achieved by the proposed method in the experiments, make parameter spaces and, more specifically, the proposed methods appealing when solving anomaly detection problems.
3

Detecção de Cross-Site Scripting em páginas Web

Nunan, Angelo Eduardo 14 May 2012 (has links)
Made available in DSpace on 2015-04-11T14:03:18Z (GMT). No. of bitstreams: 1 Angelo Eduardo Nunan.pdf: 2892243 bytes, checksum: 5653024cae1270242c7b4f8228cf0d2c (MD5) Previous issue date: 2012-05-14 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Web applications are currently an important environment for access to services available on the Internet. However, the security assurance of these resources has become an elementary task. The structure of dynamic websites composed by a set of objects such as HTML tags, script functions, hyperlinks and advanced features in web browsers may provide numerous resources and interactive services, for instance e-commerce, Internet banking, social networking, blogs, forums, among others. On the other hand, these features helped to increase the potential security risks and attacks, which are the results of malicious codes injection. In this context, Cross-Site Scripting (XSS) is highlighted at the top of the lists of the greatest threats to web applications in recent years. This work presents a method based on supervised machine learning techniques to detect XSS in web pages. A set of features extracted from URL contents and web document are employed in order to discriminate XSS patterns and to successfully classify both malicious and non-malicious pages / As aplicações web atualmente representam um importante ambiente de acesso aos serviços oferecidos na Internet. Garantir a segurança desses recursos se tornou uma tarefa elementar. A estrutura de sites dinâmicos constituída por um conjunto de objetos, tais como tags de HTML, funções de script, hiperlinks e recursos avançados em navegadores web levou a inúmeras funcionalidades e à interatividade de serviços, tais como e-commerce, Internet banking, redes sociais, blogs, fóruns, entre outros. No entanto, esses recursos têm aumentado potencialmente os riscos de segurança e os ataques resultantes da injeção de códigos maliciosos, onde o Cross-Site Scripting aparece em destaque, no topo das listas das maiores ameaças para aplicações web nos últimos anos. Este trabalho apresenta um método baseado em técnicas de aprendizagem de máquina supervisionada para detectar XSS em páginas web, a partir de um conjunto de características extraídas da URL e do documento web, capazes de discriminar padrões de ataques XSS e distinguir páginas web maliciosas das páginas web normais ou benignas
4

Análise da estabilidade transitória via rede neural Art-Artmap fuzzy Euclidiana modificada com treinamento continuado

Moreno, Angela Leite [UNESP] 22 October 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-10-22Bitstream added on 2014-06-13T20:00:53Z : No. of bitstreams: 1 moreno_al_dr_ilha.pdf: 923809 bytes, checksum: e8a55f496e6bf5bfbe0531f9211526e5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Esta pesquisa visa o desenvolvimento de um método para análise da estabilidade transitória de sistemas de energia eletrica multimaquinas, por meio de uma rede neural ART-ARTMAP Fuzzy Euclidiana Modificada com Treinamento Continuado. Esta arquitetura apresenta tres diferenciais em e relação a outras já utilizadas para abordar tal problema: (1) a rede iniciada com apenas um neuronio ativado e vai se expandindo durante todo o o treinamento/análise, (2) possui um módulo de treinamento continuado e (3) a o possui um módulo de deteção de intruso. No primeiro diferencial, a redeé iniciada com um neuronio e vai se expandindo de acordo com a aquisição de conhecimento, isto faz com que esta se torne muito mais rápida e que o gasto computacional se torne mínimo. Com o módulo de treinamento continuado, a rede neural consegue armazenar novos dados sem a necessidade de realizar o retreinamento. Já o módulo de detecção de intruso faz com que, ao ser apresentada a rede uma configuração estranha, a rede execute um treinamento específico para que esta configuração, com um número mínimo de entradas, seja incorporada definitivamente à rede neural. A aplicação para a rede proposta nesta pesquisa, foi a análise de estabilidade transitória, considerando-se o modelo clássico (estabilidade de primeira oscilação), para um sistema composto por 10 máquinas síncronas, 45 barras e 73 linhas de transmissão / This doctoral research aims to develop a method to analyze the transient stability of multimachine eletric power systems, through a neural network Modified Euclidean Fuzzy ART-ARTMAP with Continuous Training. The architecture presented has three differences in relation to others used to deal with this problem: (1) the network starts with only one neuron activated and expands throughout the training/analysis, (2) has a continuous training module and (3) has an intrusion detection module. The first difference, is the fact that it starts with a neuron and expands according to knowledge acquisition of the network, and causes it to become much faster and the computational expenses becomes minimum. With continuous training mod- ule, the neural network can store the new data without the need for the retraining. The intrusion detection module causes, when presented to the network a strange configuration, the network to carry out a specific training for this configuration with a minimum total of inputs so that the configu- ration is definitely incorporated to the neural network. The application for this network, in this research, was to analyze the transient stability consid- ering the classical model (stability of first oscillation) to a system composed of 10 synchronous machines, 45 buses and 73 transmission lines

Page generated in 0.013 seconds