Spelling suggestions: "subject:"detectors - amathematical models"" "subject:"detectors - dmathematical models""
1 |
High-speed and high-saturation-current partially depleted absorber photodetecters [i.e. photodetectorsLi, Xiaowei, 1970 May 5- 01 August 2011 (has links)
Not available / text
|
2 |
A reconfigurable neural network for industrial sensory systems梁耀祥, Leung, Yiu-cheung. January 2000 (has links)
published_or_final_version / Industrial and Manufacturing Systems Engineering / Master / Master of Philosophy
|
3 |
Parameter identification of a flexible beam using a modal domain optical fiber sensorFurness, Charles Zachary 14 April 2009 (has links)
An optical fiber sensor is used for identification of a cantilevered beam under conditions of various concentrated mass loadings. A model of the sensor as well as the dynamic system is developed and used to test the reliability of the identification. Input/output data from an experiment is gathered and used in the identification. A survey of the existing areas of damage detection and parameter identification is included, along with suggestions for incorporating fiber optic sensors into existing techniques. The goal of this research was to show that the fiber sensor can be used for identification purposes, and that it is sensitive to parameter changes within the system (in this case concentrated mass changes). / Master of Science
|
4 |
Investigation of resonant-cavity-enhanced mercury cadmium telluride infrared detectorsWehner, Justin January 2007 (has links)
[Truncated abstract] Infrared (IR) detectors have many applications, from homeland security and defense, to medical imaging, to environmental monitoring, to astronomy, etc. Increasingly, the wave- length dependence of the IR radiation is becoming important in many applications, not just the total intensity of infrared radiation. There are many types of infrared detectors that can be broadly categorized as either photon detectors (narrow band-gap materials or quantum structures that provide the necessary energy transitions to generate free car- riers) or thermal detectors. Photon detectors generally provide the highest sensitivity, however the small transition energy of the detector also means cooling is required to limit the noise due to intrinsic thermal generation. This thesis is concerned with the tech- nique of resonant-cavity-enhancement of detectors, which is the process of placing the detector within an optically resonant cavity. Resonant-cavity-enhanced detectors have many favourable properties including a reduced detector volume, which allows improved operating temperature, or an improved signal to noise ratio (or some balance between the two), along with a narrow spectral bandwidth. ... Responsivity of another sample annealed for 20 hours at 250C in a Hg atmosphere (ex-situ) also shows resonant performance, but indicates significant shunting due the mirror layers. There is good agreement with model data, and the peak responsivity due to the absorber layer is 9.5×103 V/W for a 100 'm ×100 'm photoconductor at 80K. An effective lifetime of 50.4 ns is extracted for this responsivity measurement. The responsivity was measured as a function of varying field, and sweepout was observed for bias fields greater than 50 V/cm. The effective lifetime extracted from this measurement was 224 ns, but is an over estimate. Photodiodes were also fabricated by annealing p-type Hg(1x)Cd(x)Te for 10 hours at 250C in vacuum and type converting in a CH4/H2 reactive ion etch plasma process to form the n-p junction. There is some degradation to the mirror structure due to the anneal in vacuum, but a clear region of high reflection is observed. Measurements of current-voltage characteristics at various temperatures show diode-like characteristics with a peak R0 of 10 G measured at 80K (corresponding to an R0A of approximately 104 cm2. There was significant signal from the mirror layers, however only negligible signal from the absorber layer, and no conclusive resonant peaks.
|
Page generated in 0.1185 seconds