• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bounds on Generalized Multiplicities and on Heights of Determinantal Ideals

Vinh Nguyen (13163436) 28 July 2022 (has links)
<p>This thesis has three major topics. The first is on generalized multiplicities. The second is on height bounds for ideals of minors of matrices with a given rank. The last topic is on the ideal of minors of generic generalized diagonal matrices.</p> <p>In the first part of this thesis, we discuss various generalizations of Hilbert-Samuel multiplicity. These include the Buchsbaum-Rim multiplicity, mixed multiplicities, $j$-multiplicity, and $\varepsilon$-multiplicity. For $(R,m)$ a Noetherian local ring of dimension $d$ and $I$ a $m$-primary ideal in $R$, Lech showed the following bound for the Hilbert-Samuel multiplicity of $I$, $e(I) \leq d!\lambda(R/I)e(m)$. Huneke, Smirnov, and Validashti improved the bound to $e(mI) \leq d!\lambda(R/I)e(m)$. We generalize the improved bound to the Buchsbaum-Rim multiplicity and to mixed multiplicities. </p> <p>For the second part of the thesis we discuss bounds on heights of ideals of minors of matrices. A classical bound for these heights was shown by Eagon and Northcott. Bruns' bound is an improvement on the Eagon-Northcott bound taking into consideration the rank of the matrix. We prove an analogous bound to Bruns' bound for alternating matrices. We then discuss an open problem by Eisenbud, Huneke, and Ulrich that asks for height bounds for symmetric matrices given their rank. We show a few reduction steps and prove some small cases of this problem. </p> <p>Finally, for the last topic we explore properties of the ideal of minors of generic generalized diagonal matrices. Generalized diagonal matrices are matrices with two ladders of zeros in the bottom left and top right corners. We compute their initial ideals and give a description of the facets of their Stanley-Reisner complex. Using this description, we characterize when these ideals are Cohen-Macaulay. In the special case where the ladders of zeros are triangles, we compute the height and multiplicity</p>
2

BOUNDING THE DEGREES OF THE DEFINING EQUATIONSOF REES RINGS FOR CERTAIN DETERMINANTAL AND PFAFFIAN IDEALS

Monte J Cooper (9179834) 29 July 2020 (has links)
We consider ideals of minors of a matrix, ideals of minors of a symmetric matrix, and ideals of Pfaffians of an alternating matrix. Assuming these ideals are of generic height, we characterize the condition $G_{s}$ for these ideals in terms of the heights of smaller ideals of minors or Pfaffians of the same matrix. We additionally obtain bounds on the generation and concentration degrees of the defining equations of Rees rings for a subclass of such ideals via specialization of the Rees rings in the generic case. We do this by proving that, given sufficient height conditions on ideals of minors or Pfaffians of the matrix, the specialization of a resolution of a graded component of the Rees ring in the generic case is an approximate resolution of the same component of the Rees ring in question. We end the paper by giving some examples of explicit generation and concentration degree bounds.
3

On the Defining Ideals of Rees Rings for Determinantal and Pfaffian Ideals of Generic Height

Edward F Price (9188318) 04 August 2020 (has links)
<div>This dissertation is based on joint work with Monte Cooper and is broken into two main parts, both of which study the defining ideals of the Rees rings of determinantal and Pfaffian ideals of generic height. In both parts, we attempt to place degree bounds on the defining equations.</div><div> </div><div> The first part of the dissertation consists of Chapters 3 to 5. Let $R = K[x_{1},\ldots,x_{d}]$ be a standard graded polynomial ring over a field $K$, and let $I$ be a homogeneous $R$-ideal generated by $s$ elements. Then there exists a polynomial ring $\mathcal{S} = R[T_{1},\ldots,T_{s}]$, which is also equal to $K[x_{1},\ldots,x_{d},T_{1},\ldots,T_{s}]$, of which the defining ideal of $\mathcal{R}(I)$ is an ideal. The polynomial ring $\mathcal{S}$ comes equipped with a natural bigrading given by $\deg x_{i} = (1,0)$ and $\deg T_{j} = (0,1)$. Here, we attempt to use specialization techniques to place bounds on the $x$-degrees (first component of the bidegrees) of the defining equations, i.e., the minimal generators of the defining ideal of $\mathcal{R}(I)$. We obtain degree bounds by using known results in the generic case and specializing. The key tool are the methods developed by Kustin, Polini, and Ulrich to obtain degree bounds from approximate resolutions. We recover known degree bounds for ideals of maximal minors and submaximal Pfaffians of an alternating matrix. Additionally, we obtain $x$-degree bounds for sufficiently large $T$-degrees in other cases of determinantal ideals of a matrix and Pfaffian ideals of an alternating matrix. We are unable to obtain degree bounds for determinantal ideals of symmetric matrices due to a lack of results in the generic case; however, we develop the tools necessary to obtain degree bounds once similar results are proven for generic symmetric matrices.</div><div> </div><div> The second part of this dissertation is Chapter 6, where we attempt to find a bound on the $T$-degrees of the defining equations of $\mathcal{R}(I)$ when $I$ is a nonlinearly presented homogeneous perfect Gorenstein ideal of grade three having second analytic deviation one that is of linear type on the punctured spectrum. We restrict to the case where $\mathcal{R}(I)$ is not Cohen-Macaulay. This is a natural next step following the work of Morey, Johnson, and Kustin-Polini-Ulrich. Based on extensive computation in Macaulay2, we give a conjecture for the relation type of $I$ and provide some evidence for the conjecture. In an attempt to prove the conjecture, we obtain results about the defining ideals of general fibers of rational maps, which may be of independent interest. We end with some examples where the bidegrees of the defining equations exhibit unusual behavior.</div>

Page generated in 0.062 seconds