Spelling suggestions: "subject:"detrital"" "subject:"detritals""
31 |
GEOCHRONOLOGICAL AND GEOCHEMICAL CONSTRAINTS ON THE ORIGIN OF THE CARTOOGECHAYE TERRANE, WESTERN NORTH CAROLINA: IMPLICATIONS FOR THE LATE PRECAMBRIAN TO EARLY PALEOZOIC EVOLUTION OF THE EASTERN LAURENTIAN MARGINWalsh, Kevin B., Jr. 01 January 2018 (has links)
The Cartoogechaye terrane (CT) is an enigmatic migmatite terrane within the Central Blue Ridge province of the southern Appalachians. Previous work identified exotic Pb isotope compositions within the CT (Quinn, 2012). More recent studies that mapped the extent of potentially exotic metaigneous lithologies yield U-Pb zircon ages consistent with a native Laurentian margin metasedimentary origin (Larkin, 2016). This study focused on the possible extent of similar lithologies in the Clyde quadrangle and provides further constraints on the crustal affinity of the CT. The Clyde quadrangle consists of four distinct lithologic packages: the CT, Ashe metamorphic suite, Great Smoky Group, and Grenville basement. Five samples within the Clyde quadrangle and one sample from Wayah Bald quadrangle were collected for detrital zircon (DZ) U-Pb geochronology and whole rock geochemistry for comparison similar anlayses from other bedrock units in the region. Dominant DZ age modes consist of the Grenville doublet (1050 Ma and 1150 Ma) or a modified version of it. Minor age modes exist at ~450 Ma, 600-750 Ma, and 1300-1550 Ma. Zircons for all but one sample display heterogeneous external and internal cathodoluminescence morphologies, consistent with a sedimentary protolith for the paragneisses. Whole rock compositions are consistent with weathering of and derivation from a local basement source. U-Pb age data are most consistent with an eastern Laurentian sedimentary provenance for five samples. The presence of 450-460 Ma grains is most consistent with high-grade Taconian regional metamorphism. The lack of a major Shawinigan age mode and zircon morphology for ca. 980-1050 Ma metamorphic zircons indicate that sample CLY16-1 is a syn-orogenic metasediment within the Grenville basement underlying the CT.
|
32 |
Provenance response to flat-slab subduction as recorded in detrital zircon signatures from the southern Alaskan forearc basin systemHedeen, Tyler 01 May 2016 (has links)
Strata in the Cook Inlet forearc basin in south-central Alaska record the effects of tectonic events related to normal subduction and two flat-slab subduction events. Through detrital zircon geochronology we track provenance changes of strata deposited in a forearc basin in conjunction with these different subduction processes. Our data from strata deposited concurrent with normal subduction help to confirm previous provenance models of forearc basins that suggest provenance is sourced primarily from a proximal, coeval arc. However, compared to these models, our data from strata deposited coincident to flat-slab events show markedly different provenance signatures dependent upon: (1) geographic position relative to the flat-slab event; (2) pre-established, or lack thereof, topography; and (3) type of flat-slab event. Detrital zircon signatures of strata deposited in the Cook Inlet after flat-slab subduction of a mid-ocean ridge diversify to include older detritus found in the distal inboard region. This distal signature is then incrementally cut-off in younger strata due to deformation of the upper-plate from progressive insertion of a shallowly subducted oceanic plateau. Detrital zircon signatures for strata associated with each flat-slab event are largely older than depositional age due to the lack of coeval arc activity. Our data may help to improve the ability to recognize other flat-slab events through detrital zircon geochronology. In particular, changes in detrital zircon signatures found in strata deposited during flat-slab subduction of an oceanic plateau correlate well with the exhumation of rocks associated with the propagation of deformation in the over-riding plate due to plate coupling.
|
33 |
Forearc basin detrital zircon provenance of Mesozoic terrane accretion and translation, Talkeetna Mountains-Matanuska Valley, south-central AlaskaReid, Mattie Morgan 01 May 2017 (has links)
The Wrangellia composite terrane is one of the largest fragments of juvenile crust added to the North American continent since Mesozoic time, and refining its accretionary history has important implications for understanding how continents grow. New U-Pb geochronology and Hf isotopes of detrital zircons from Late Jurassic-Late Cretaceous strata from the forearc of the Wrangellia composite terrane allows more insight on the tectonic and paleogeographic history of the terrane.
Our stratigraphically oldest samples from the Late Jurassic Naknek Formation have a detrital zircon U-Pb signature dominated by Early and Late Jurassic grains (195-190 Ma; 153-147 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Disconformably above the Naknek Formation are two poorly understood units Ks and Kc. The Ks unit is dominated by Early to Late Jurassic grains (159-154 Ma) with a few Paleozoic grains (347-340 Ma). Hf isotopic compositions of Carboniferous-Jurassic grains are juvenile to intermediate (εHf(t)=6.0-18.8). The overlying Kc unit has Late to Early Jurassic zircons (198-161 Ma), and an increase in Paleozoic ages (374-323 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Samples from the Matanuska Formation have major Late Cretaceous grains (90-71 Ma), and minor Early Cretaceous (137-106 Ma), Late to Early Jurassic (200-153 Ma), Paleozoic (367-277 Ma), and Precambrian grains (2597-1037 Ma). Hf compositions have a wider range from both the Late Cretaceous grains (εHf(t)=-1.5-14.9) and Paleozoic-Precambrian grains (εHf(t)=-23.7-16.3).
Our results suggest an evolving provenance from Late Jurassic to Late Cretaceous time for the Wrangellia composite terrane forearc basin. The Late Jurassic Naknek Formation samples were dominantly derived from a juvenile to intermediate Jurassic igneous sediment source. During Early Cretaceous time, there is a slight increase in the number of Paleozoic grains in the Ks and Kc unit samples. The Early Cretaceous sediments have a mostly positive Hf isotopic compositions suggesting exhumation of Jurassic and Paleozoic juvenile igneous sediment sources. By Late Cretaceous time, our data illustrates another increase in Paleozoic grain abundances, in addition to the introduction of Precambrian grains, all with widely variable Hf isotopic compositions. We interpret this to reflect a larger sediment flux from the interior of Alaska where more evolved igneous rocks of that age are found.
|
34 |
Development of a detrital garnet geochronometer and the search for Earth's oldest garnetManeiro, Kathryn Ann 07 December 2016 (has links)
Due to Earth’s efficient crustal recycling through plate tectonics, the remaining physical record of Earth’s first two billion years consists of mineral fragments and heavily metamorphosed rocks in isolated Archean cratons. Characterization of Earth’s earliest tectonic processes requires investigation of all available records; the mineral garnet has been largely overlooked. The major element chemistry and samarium-neodymium (Sm-Nd) isotope ratios preserved in fragmented detrital garnet and Archean metamorphic garnet record the timing and conditions of early tectonic events.
This work presents detailed methodology for a new detrital garnet geochronometer unlocking age information from previously undateable detrital garnet surviving recycling in sediment, sedimentary rocks, and metasedimentary rocks. The new method’s utility is demonstrated by dating garnet from a Scottish sedimentary rock and nineteen individual garnet grains from a tributary to the French Broad River in the southern Appalachians. In the southern Appalachians, garnet and existing monazite ages overlap (though the mean garnet age is slightly younger) to record the most recent metamorphic event and both are younger than inherited zircon ages. Proof-of-concept testing demonstrating protocol development for blank-correction and routine analysis of samples smaller than 1 ng advances small Sm-Nd analysis.
Additionally, this work applies existing Sm-Nd garnet geochronology methods to search for garnet older than 2.5 Ga and provide age constraints on the complicated metamorphic histories of two Archean cratons. A search for detrital garnet in a sample from the Jack Hills metasedimentary belt of Western Australia hosting the Earth’s oldest known terrestrial materials (ca. 4.3 Ga) failed to produce garnet. Instead, two samples collected ~4 km south of the Jack Hills belt in the Narryer Terrane were dated to confirm Narryer regional metamorphism at ca. 2.6 Ga. The Acasta gneiss of northern Canada, arguably Earth’s oldest known cohesive rock outcrop (ca. 4.0 Ga), produced one of the Earth’s oldest known garnet ages. Garnet ages of ca. 2.95 Ga constrain the timing of Archean metamorphism and the data also indicate potential for preservation of even older garnet. Finally, a compilation of published garnet ages in the literature is presented to summarize the community’s progress in the search for Earth’s oldest garnet. / 2017-12-06T00:00:00Z
|
35 |
Detrital Zircon U-Pb Geochronology and Provenance Analysis of Sedimentary Rocks in the Paleo-Kuril Arc System (Nemuro and Tokoro Belts), Eastern Hokkaido, Northern Japan. / 北海道東部に分布する古千島弧堆積岩(根室帯および常呂帯)の砕屑性ジルコンU-Pb年代学と後背地解析Harisma 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24175号 / 理博第4866号 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 成瀬 元, 准教授 河上 哲生, 教授 田上 高広 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
36 |
Source Tracing of Dissolved Organic Matter (DOM) in Watersheds Using UV and Fluorescence SpectroscopyWong, Jessica 17 February 2010 (has links)
In aquatic ecosystems, dissolved organic matter (DOM) is an important source of detrital energy on which microorganisms rely. However, its dynamics are not well understood in an ecological context. By isolating watershed sources, the work reported in this thesis has attempted to characterize the seasonal patterns of DOM in the hyporheic zone of a temperate stream and to find the likely sources that contribute to this pool of organic carbon. Hyporheic DOM characteristics described by UV spectroscopy indicated temporal rather than spatial dependence. Excitation-emission matrices (EEMs) showed that hyporheic DOM was mainly comprised of fulvic- and humic-like fluorescence with small amounts of protein-like fluorescence. Increases in dissolved organic carbon (DOC) concentrations from birch litter isolates were greater than those from cedar litter in early autumn, but less in late autumn. Although streambed biofilm was not significant in increasing DOC concentrations, it was also a source of protein-like fluorescence.
|
37 |
Detrital Zircon Geochronology of Middle Ordovician Siliciclastic Sediment on the Southern Laurentian ShelfPickell, Michael 14 March 2013 (has links)
Middle Ordovician (Whiterockian) sandstone units within the Oil Creek, McLish, and Tulip Creek formations of the Simpson Group of Oklahoma, and the Everton (Calico Rock Member) and St. Peter formations of Arkansas were deposited on the southern margin of Laurentia. They represent the first major siliciclastic input to the southern U.S. Midcontinent above the post-Sauk unconformity. Samples were collected from outcrops of the major sandstone units to determine their U-Pb detrital zircon age distributions for provenance. Samples were prepared and analyzed using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS). Probability-density plots were created to determine likely source areas for sediment, based on comparing detrital zircon ages to known ages of basement terranes.
Detrital zircon grains from the Early Whiterockian Calico Rock sandstone indicate a majority of its zircon population was ultimately derived from the 900-1300 Ma Grenville orogenic province, with secondary input ultimately derived from the 1300-1550 Ma Granite-Rhyolite/Anorogenic Province and the Archean Superior province along the Transcontinental Arch. It is likely, at this time, that zircons were also sourced from reworked sediments from more proximal secondary sources. With sea level rise and transgression, the depositional shoreline and the sediment source areas moved to the north and west. The basal Oil Creek Sandstone of the Simpson Group was deposited unconformably above the Arbuckle Group in southern Oklahoma, and its zircon population is dominated by grains from Archean source terranes along the Transcontinental Arch.
The basal sandstone unit of the McLish Formation indicates renewed sediment input containing zircons from 1300-1550 Ma Granite-Rhyolite/Anorogenic and 1600-1700 Ma Yavapai-Mazatzal terranes along the Transcontinental Arch. The Nemaha Ridge in northeastern Kansas likely acted as a source of first-cycle sediment in the southern midcontinent during this time.
Small populations of detrital zircon grains between 1800 Ma and 2000 Ma occur in the majority of the samples. Their probability density peaks are generally centered at roughly 1850 Ma, suggesting an ultimate source in the Penokean orogenic province along the Transcontinental Arch.
|
38 |
Source Tracing of Dissolved Organic Matter (DOM) in Watersheds Using UV and Fluorescence SpectroscopyWong, Jessica 17 February 2010 (has links)
In aquatic ecosystems, dissolved organic matter (DOM) is an important source of detrital energy on which microorganisms rely. However, its dynamics are not well understood in an ecological context. By isolating watershed sources, the work reported in this thesis has attempted to characterize the seasonal patterns of DOM in the hyporheic zone of a temperate stream and to find the likely sources that contribute to this pool of organic carbon. Hyporheic DOM characteristics described by UV spectroscopy indicated temporal rather than spatial dependence. Excitation-emission matrices (EEMs) showed that hyporheic DOM was mainly comprised of fulvic- and humic-like fluorescence with small amounts of protein-like fluorescence. Increases in dissolved organic carbon (DOC) concentrations from birch litter isolates were greater than those from cedar litter in early autumn, but less in late autumn. Although streambed biofilm was not significant in increasing DOC concentrations, it was also a source of protein-like fluorescence.
|
39 |
Thermochronometric investigation of the Paleozoic stratigraphic and thermal evolution of the Western Desert, EgyptRhatigan, Caleb Hayes 01 November 2013 (has links)
The northeast African continental margin of the Western Desert of Egypt is host to a complexly deformed series of Phanerozoic basins. Substantial sedimentary deposition (~5 km) and basin formation resulted from regional deformation due to continental collision and repeated rifting and inversion cycles. Limited sedimentary exposure and exploration has prevented elucidation of Phanerozoic basin evolution, particularly in the Paleozoic. Previous studies of the region have largely relied upon sedimentary analysis, gravity, and 2D/3D seismic data. This study, in contrast, has employed extensive use of detrital zircon (U-Th)/He thermochronology (n=1004) from 17 wells in conjunction with 3D seismic, well log correlation, and heat flow data to elucidate a spatiotemporally comprehensive tectonic and stratigraphic model.
The detrital zircon thermochronometric data provides new evidence that the lower Paleozoic, Carboniferous, and Mesozoic stratigraphic sequences of the Western Desert represent thermally distinct, tectonically controlled sequences with independent thermal evolutions. The lower Paleozoic sequence has been partially thermally reset, reaching temperatures of ~140-170 ̊C. Partial resetting is noted throughout the region and reached its thermal maximum in the Permo-Triassic, synchronous with onset of Neotethyan rifting. The Carboniferous sequence has not been thermally reset, with exposure to temperatures no greater than ~140 ̊C and reaching thermal maximum presently. Carboniferous (U-Th)/He ages have dominant input from short-lag-time zircons (exhumation to deposition) and indicate the stratigraphic sequence was proximally sourced. The proximal sourcing is likely from transmitted stress and fault reactivation in Egypt during the Hercynian Orogeny that caused fault block exhumation and erosional unroofing. Sediment was shed from uplifted fault blocks that formed the eastern boundary of the Carboniferous sequence. The Mesozoic sequence has not been thermally reset, reaching temperatures no greater than ~120 ̊C and presently reaching thermal maximum.
Localized areas with stacking of lower Paleozoic, Carboniferous, and Mesozoic sequences likely bury the lower Paleozoic to abnormally deep depths (~7 km) and elevated temperatures of ~200 ̊C. Evidence from faulting relationships, basin controlling structures, and heat flow data indicate that N-S trending basement structures may define a region of crustal transition between the Archean-Paleoproterozoic Saharan Metacraton and the juvenile Arabian-Nubian Shield. / text
|
40 |
Tectonic Evolution of Taimyr in the Late Paleozoic to Mesozoic from Provenance and Thermochronological EvidenceZhang, Xiaojing January 2015 (has links)
The Taimyr Peninsula is a key element in the circum-Arctic region and represents thenorthern margin of the Siberian Craton. The Taimyr Peninsula is a late Paleozoic fold andthrust belt and preserves late Paleozoic through Mesozoic siliciclastic sedimentarysuccessions and providing an ideal location to investigate the Paleozoic to Mesozoictectonic evolution associated with the Uralian orogeny, the Siberian Trap magmatism andopening of Amerasia Basin within a circum-Arctic framework. Multiple methods areadopted, including petrography, heavy mineral analysis and detrital zircon U-Pbgeochronology for provenance investigation, apatite fission track dating for revealingthermal history and balanced cross section for understanding the deformation style ofTaimyr.The results of this thesis indicate that the Late Carboniferous to Permian sediments ofsouthern Taimyr were deposited in a pro-foreland basin of the Uralian orogen during theUralian orogeny. In the Triassic, the siliciclastic deposits still show a strong Uraliansignature but the initiation of Siberian Trap-related input begins to be significant. Erosionof the Uralian orogen has reached a deep metamorphic level. By Late Jurassic andCretaceous time, the deposition setting of southern Taimyr is an intracratonic basin.Erosion and input from Uralian sources waned while greater input from SiberianTrap-related rocks of the Taimyr region dominated. The Taimyr Peninsula underwent atleast three cooling and uplifting episodes: 280 Ma, 250 Ma and 220 Ma, corresponding tothe Uralian orogeny, the Siberian Traps and the late Triassic transpression. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: In press. Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
Page generated in 0.052 seconds