• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 12
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 79
  • 55
  • 30
  • 23
  • 21
  • 20
  • 19
  • 15
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PALEOGEOGRAPHIC AND TECTONIC IMPLICATIONS OF THE LATE PALEOZOIC ALLEGHANIAN OROGEN DEVELOPED FROM ISOTOPIC SEDIMENTARY PROVENANCE PROXIES FROM THE APPALACHIAN FORELAND BASIN

Becker, Thomas Patrick 01 January 2005 (has links)
The Alleghanian orogeny was a collision between the Gondwanan and Laurentian continents that produced the Pangean supercontinent. Mechanical and kinematic models of collisional orogens are believed to follow a critical taper geometry, where the tectonic imbrication of continental crust begins nearest to the edge of continental plate and advances toward the craton in a break- forward sequence. Studies of shear zones within the Alleghanian collisional orogen, however, suggest that most of the early deformation was translational. Propagation of craton-directed thrusts into the foreland did not occur until the latest Pennsylvanian in the southern Appalachians, and the middle-late Permian in the central Appalachians. Radiometric sedimentary provenance proxies have been applied to the late Mississippian-early Permian strata within the Appalachian foreland basin to determine the crustal composition and structural evolution of the orogen during the continental collision. U-Pb ages of detrital zircons from the early to middle Pennsylvanian sandstones suggest that most of the detritus within the Appalachian basin was recycled from Mesoproterozoic basement and Paleozoic strata of the Laurentian margin. The presence of Archean and late Paleoproterozoic age detrital zircons is cited as evidence of recycling of the Laurentian syn-rift and passive-margin sandstones. Detrital zircon ages from early-middle Permian-age sandstones of the Dunkard Group do not contain any Archean or Paleoproterozoic detrital-zircon ages, implying a source of sediment with a much more restricted age population, possibly the igneous and metamorphic internides or middle Paleozoic sandstones from the Appalachian basin. The persistance of 360-400 Ma K/Ar ages of detrital white mica suggest that the sediment was supplied from a source that was exhumed during the Devonian Acadian orogeny. Detrital-zircon and detrital-white-mica ages from Pennsylvanian-age sandstones indicate that the late Paleozoic orogen did not incorporate any significant synorogenic juvenile crust. The 87Sr/86Sr ratios of middle Pennsylvanian-early Permian lacustrine limestones within the Appalachian basin show a slight enrichment through time, suggesting that labile 87Sr-rich minerals in the Alleghanian hinterland are being exposed. Stable isotopic data from the lacustrine limestones also corroborates that the Appalachian basin became much more arid through time.
2

Controls on the distribution, source and timing of mineral cements in an oilfield

Barclay, Stuart Adrian January 1999 (has links)
No description available.
3

Age and Origin of the Merrimack Terrane, Southeastern New England: A Detrital Zircon U-Pb Geochronology Study

Sorota, Kristin Joy January 2013 (has links)
Thesis advisor: J C. Hepburn / Thesis advisor: Yvette D. Kuiper / Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ~1.0 to ~1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Geology and Geophysics.
4

The Cretaceous Evolution of the Lhasa Terrane, Southern Tibet

Leier, Andrew January 2005 (has links)
The Tibetan plateau is arguably the most important geological feature on Earth, yet its formation and evolution are poorly understood. This investigation utilizes Cretaceous sedimentary strata exposed in the Lhasa terrane of southern Tibet in order to constrain the paleogeography and tectonic setting of the region prior to the Indo-Asian collision. Lower Cretaceous strata consist of clastic sedimentary units that were deposited in shallow marine and fluvial environments. In northern Lhasa these sediments were deposited in a peripheral foreland basin that formed in response to the Lhasa-Qiangtang collision. The lower Cretaceous sediments in southern Lhasa are quartzose and were derived from cover strata exposed by local uplifts. A marine limestone of Aptian-Albian age overlies the lower Cretaceous clastic strata and was deposited in a shallow continental seaway. The paleogeography of the Lhasa terrane during deposition of the carbonate units was dominated by the effects of the Lhasa-Qiangtang collision, although other conditions, such as a high eustatic sea-level, influenced sedimentation as well. The Upper Cretaceous Takena Formation is composed of a basal member of marine limestone and an overlying member of fluvial red beds. The arkosic strata of the Takena Formation were deposited in a retro-arc foreland basin that formed to the north of the Gangdese magmatic arc. Collectively, the Cretaceous sedimentary strata indicate significant tectonic activity occurred in southern Tibet prior to the Indo-Asian collision. Moreover, the data suggest the crust of southern Tibet was thickened and possibly at high elevations before the Cenozoic.
5

Ediacaran Depositional Age and Subsequent Fluid-Rock Interactions in the Mutual and Browns Hole Formations of Northern Utah

Provow, Ashley W. 01 May 2019 (has links)
Constraining the depositional age of Neoproterozoic stratigraphy in western North America has implications for correlating global glaciation and tectonic events. The depositional ages of the Neoproterozoic Mutual and Browns Hole formations of northern Utah are controlled by two conflicting datapoints. However, new U-Pb geochronological data from 95 detrital apatite grains refines the maximum depositional age of the volcanic member of the Browns Hole Formation to 613 ± 12 Ma (2σ). This places new restrictions on the time available for the deposition of underlying units. Due to debate regarding the age models for underlying stratigraphy, two scenarios for sediment accumulation rates are explored. These results highlight a need for further exploring regional unconformities. Evidence for several post-depositional fluid-rock interaction events are observed in the Mutual and Browns Hole formations. Cross-cutting relationships identified via petrography, scanning electron microscopy, and electron microprobe analysis show at least seven fluid mediated events: (1) early grain-rimming hematite cement, (2) quartz overgrowth and cement development, (3) feldspar dissolution, (4) phosphate dissolution, (5) partial quartz dissolution, (6) authigenic mineral precipitation in cluding clays, sericite, monazite, and apatite cement, and (7) later hematite cementation. Constraining the timing of these events is challenging due to a limited of datable material. Using basic geochemical modeling and consideration of expected mineral formation conditions, a paragenetic sequence is placed into context of the known geologic history.
6

Petrographic and Geochronologic Provenance Analysis of Upper Pennsylvanian Fluvial Sandstones of the Conemaugh and Monongahela Groups, Athens County, Ohio

Dodson, Scott A. 25 September 2008 (has links)
No description available.
7

Insights for provenance analysis of modern watersheds from detrital apatite and detrital zircon U-PB geochronology- Talkeetna Mountains, southcentral Alaska

Ames, Carsyn Jean 01 May 2018 (has links)
Detrital zircon U-Pb geochronology is a useful tool for analyzing provenance in the sedimentary record. Differentiating recycled and first cycle populations in the detrital record, however, is not a straightforward process. A second potential problem in using detrital signatures to determine provenance of sediment lies in the assumption that detrital signatures of modern rivers reflect input from each exposed unit in the catchment boundaries. To investigate each of these problems, I present U-Pb analysis of detrital zircon (DZ) from modern river sand collected from 20 watersheds, 6 detrital apatite (DA) signatures from modern river sand, and 6 DA signatures from exposed strata, all within the Talkeetna Mountains (south-central Alaska). DA rarely survives past the first cycle of erosion and deposition due to its inability to survive chemical weathering, and thus dominantly represent igneous input in detrital signatures, whereas zircon can be of igneous origin or can survive multiple cycles of erosion and deposition. By comparing the DA signatures with the DZ signatures, I present a method to better differentiate first cycle, igneous sediment contributions from recycled populations within a detrital signature. The results of these comparisons show that DA signatures provide ages of igneous input into the detrital record; these ages are also reflected in the DZ signature, thus signaling these DZ populations as igneous in origin. This study also investigates the potential for DA recycling and DA input from recycled strata. To address the second problem, I present a method using GIS software and the most recent map of Alaska to create simulated signatures that records input on a scale proportionate to the exposed surface area of each bedrock unit. In ~35% of the watersheds tested, the simulated signatures predict trends similar to the DZ signatures from the modern river sands, in 55% of the watersheds tested the simulated signatures missed one or more populations present in the DZ signature, and in 10% of watersheds tested, the simulated signature predicted trends very different from the DZ signatures. In cases where the DZ and simulated signatures do not match, I believe this represents influences of climate and relief and zircon fertility.
8

Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes

Fosdick, J. C., Reat, E. J., Carrapa, B., Ortiz, G., Alvarado, P. M. 03 1900 (has links)
Tectonic development of the Andean Cordillera has profoundly changed the topography, climate, and vegetation patterns of the southern central Andes. The Cenozoic Bermejo Basin in Argentina (30 degrees S) provides a key record of thrust belt kinematics and paleoclimate south of the high-elevation Puna Plateau. Ongoing debate regarding the timing of initiation of upper plate shortening and Andean uplift persists, precluding a thorough understanding of the earlier tectonic and climatic controls on basin evolution. We present new sedimentology, detrital geochronology, sandstone petrography, and subsidence analysis from the Bermejo Basin that reveal siliciclastic-evaporative fluvial and lacustrine environments prior to the main documented phase of Oligocene-Miocene shortening of the Frontal Cordillera and Argentine Precordillera. We report the first radiometric dates from detrital zircons collected in the Cienaga del Rio Huaco Formation, previously mapped as Permian, that constrain a Late Cretaceous (95-93Ma) maximum depositional age. Provenance and paleocurrent data from these strata indicate that detritus was derived from dissected arc and cratonic sources in the north and northeast. Detrital zircon U-Pb ages of 37Ma from the overlying red beds suggest that foredeep sedimentation began by at least the late Eocene. At this time, sediment dispersal shifted from axial southward to transversal eastward from the Andean Arc and Frontal Cordillera. Subsidence analysis of the basin fill is compatible with increasing tectonic deformation beginning in Eocene time, suggesting that a distal foredeep maintained fluvial connectivity to the hinterland during topographic uplift and unroofing of the Frontal Cordillera, prior to Oligocene-Miocene deformation across the Precordillera.
9

New Constraints on the Age of Deposition and Provenance of the Metasedimentary Rocks in the Nashoba Terrane, SE New England

Loan, MaryEllen Louise January 2011 (has links)
Thesis advisor: J. Christopher Hepburn / The Nashoba terrane of SE New England is one of three peri-Gondwanan tectonic blocks caught between Laurentia and Gondwana during the closure of the Iapetus Ocean in the early to mid- Paleozoic. U-Pb analyses (LA-ICP-MS) were carried out on zircon suites from the meta-sedimentary rocks of the Nashoba terrane. The youngest detrital zircons in the meta-sedimentary rocks of the Nashoba terrane are Ordovician in age. There is no significant difference in age between meta-sedimentary units of the Nashoba terrane across the Assabet River Fault Zone, a major fault zone that bisects the NT in a SE and a NW par. Zircon in meta-sedimentary rocks in the Marlboro Fm., the oldest unit of the Nashoba terrane, is rare, which may reflect the basaltic nature of the source material, and is commonly metamict. The Marlboro Fm. contained the oldest detrital grain of all the analyzed samples, with a core of ~3.3 Ga and rim of ~2.6 Ga indicating that it was sourced from Archaen crustal material. Detrital zircons from the Nashoba terrane show a complete age record between the Paleoproterozoic and Paleozoic that strongly supports a provenance from the Oaxiqua margin of Amazonia. The detrital zircon suite of the Nashoba terrane is distinct from both Avalonia and the Merrimack belt; however, they resemble zircon suites from Ganderia. This study proposes that the Nashoba terrane of Massachusetts correlates with the passive trailing edge of Ganderia. Finally, metamorphic zircon analyses of the terrane show that the Nashoba terrane experienced a peak in hydrothermal fluid infiltration during the Neoacadian orogeny. / Thesis (MS) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
10

New CA-ID-TIMS Detrital Zircon Constraints on Middle Neoproterozoic Sedimentary Successions, Southwestern United States

Bullard, Abigail R. 01 December 2018 (has links)
Three related sedimentary successions located in Arizona, Utah, and California were deposited in basins on proto-North America during the early rifting of Rodinia (~780 Mya). Previous detrital zircon U-Pb maximum ages for the units are inexact, making it difficult to piece together what happened at this point in Earth history. We report better maximum age constraints on these units obtained by subjecting detrital zircons to high-precision CA-ID-TIMS analysis, which provide more exact 206 Pb/238U ages. These new data significantly improve the precision for the base of the ChUMP units, with an average age of 775. 63 ± 0.27 Ma acquired for the bottom of the Chuar Group, where earlier work put the age at 782 Ma. An average age of 775.44 ± 0.73 Ma for the bottom of the Pahrump Group is also younger than the previously reported 787 ± 11 Ma. Zircons of the Uinta Mountain Group provided ages of about 766.88 ± 2.31 Ma, which is on par with an earlier age of 766.4 ± 4.8 Ma. These high precision ages for the young detrital zircons in the ChUMP units improve links between the units and provide better context for geochemical, isotopic, and biological events that occurred during the initial rifting of Rodinia.

Page generated in 0.0276 seconds