Spelling suggestions: "subject:"device"" "subject:"crevice""
231 |
Modelling and design of a general purpose, vertical shaft conveyance, all level docking device / Adriaan Johannes Hendrikus LamprechtLamprecht, Adriaan Johannes Hendrikus January 2015 (has links)
Deep level mining is widely practised throughout South Africa, particularly in the gold sector, where
the extraordinary depths of vertical hoisting present an array of challenges. The accurate and secure
positioning of a conveyance next to a station has been and continues to be one of the unresolved
challenges that have led to many serious injuries and equipment damage. The literature study
presented in this dissertation highlights some of the complexities associated with properly docking a
conveyance and investigates some current, proposed and similar systems to address the issue. From
the study it was found that no satisfactory device existed prompting a systematic design of a
conveyance arresting device capable of securing a conveyance in a vertical shaft at any level.
Proper definition of the system requirements was obtained and summarised into 16 groups. The
system requirements play an important role in the design process by setting the direction but also
featuring in concept screening and evaluation. In order to generate concepts a variety of creativity
inspiring techniques were employed facilitating a systematic search for a solution. Application of the
techniques, Brainstorming, Synectics, TRIZ, 2500 Engineering Principles, Sourcebooks and a
Morphological chart resulted in the synthesis of 9 concepts. Screening and evaluation was performed
on these concepts and the most suitable concept identified.
The proposed concept is a simple system where two sets of beams are extended into the shaft in
order to have the conveyance settle onto the supporting shaft steelwork. Once the conveyance came
to a rest on the steelwork a second set of beams are extended beneath the steelwork to positively
lock the conveyance in position. This required the geometric design of the system to ensure adequate
strength to satisfy a factor of safety of ten. Design decisions were made on the section properties of
the clamp beam by comparing a solid section and a box section. A supporting frame is used to guide
the beams, with consideration given to the most appropriate method of attaching this support frame to
the conveyance. The first choice was to have the beams extend from the rear of the conveyance but
due to the moments and forces involved the conveyance roof structure could not support this
configuration. The support frame was instead affixed directly to the conveyance Transom.
In order to support the findings of the conventional calculations performed on the system components
the system was subjected to finite element analysis. The results obtained from the simulation
corresponded well for the simple components and varied somewhat in the more complex shapes
attributed to the assumptions made to ease the conventional calculations. Weight and reliability in a
harsh shaft environment was identified as critical design parameters and motivated the use of exotic
high strength materials. The high strength of the materials made is possible to design a system with
practical dimensions of adequate strength supported by the conventional and modelled calculations.
Even though high strength materials were used in the design the overall system weigh is dissatisfying.
A potentially successful and practical device was designed but certain factors such as weight, cost,
conveyance structure and infrastructure modifications threaten the implementation of the design. This
dissertation sets a sound foundation for future development and the continued search for a practical
simple solution to this age old challenge. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
|
232 |
Photon signatures for standoff bomb detectionLoschke, Kyle W. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / The purpose of this research was to develop a technology to quickly identify hidden explosive materials. The developed method needs to be performed at a standoff distance of approximately two meters or more, must have high sensitivity (low false-negative rate) and good specificity (low false-positive rate), and should be able to detect a minimum amount of approximately one gallon (15 lbs) of explosive material.
In an effort to meet these goals, a template-matching procedure to aid in the rapid detection of hidden improvised explosive devices was investigated. Multiple photon-scattered responses are being used as a part of a multidimensional signature-based radiation scanning (SBRS) approach in an attempt to detect chemical explosives at safe, standoff distances. The SBRS approach utilizes both neutron and photon interrogation to determine if a target contains explosive material, but the focus of this thesis is on photon interrogation.
Beams of photons are used to create back-streamed responses called signatures, which are dependent on the density and the composition of the target. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a single figure-of-merit. A low figure-of-merit indicates an explosive might be present in the target. Experiments have been conducted that show an explosive surrogate (fertilizer) can be distinguished from several inert materials using these photon signatures, proving these signatures to be very useful in this particular method of chemical explosive detection.
|
233 |
Single cell analysis on microfluidic devicesChen, Yanli January 1900 (has links)
Master of Science / Department of Chemistry / Christopher T. Culbertson / A microfluidic device integrated with valves and a peristaltic pump was fabricated using multilayer soft lithography to analyze single cells. Fluid flow was generated and mammalian cells were transported through the channel manifold using the peristaltic pump. A laser beam was focused at the cross-section of the channels so fluorescence of individual labeled intact cells could be detected. Triggered by the fluorescence signals of intact cells, valves could be actuated so fluid flow was stopped and a single cell was trapped at the intersection. The cell was then rapidly lysed through the application of large electric fields and injected into a separation channel. Various conditions such as channel geometry, pumping frequency, control channel size, and pump location were optimized for cell transport. A Labview program was developed to control the actuation of the trapping valves and a control device was fabricated for operation of the peristaltic pump. Cells were labeled with a cytosolic dye, Calcein AM or Oregon Green, and cell transport and lysis were visualized using epi-fluorescent microscope. The cells were transported at rates of [simular to] 1mm/s. This rate was optimized to obtain both high throughput and single cell trapping. An electric field of 850-900 V/cm was applied so cells could be efficiently lysed and cell lysate could be electrophoretically separated. Calcein AM and Oregon Green released from single cells were separated and detected by laser-induced fluorescence. The fluorescence signals were collected by PMT and sampled with a multi-function I/O card. This analyzing method using microchip may be applied to explore other cellular contents from single cells in the future.
|
234 |
Latest Status on Adding FTS Capability to a Missile Telemetry SectionKujiraoka, Scott, Fielder, Russell, Jones, Johnathan, Sandberg, Aliva 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / Development is currently underway to produce a dual redundant Flight Termination System (FTS) capable Missile Telemetry Section. This FTS will mainly consist of a conformal wraparound antenna, two flight termination safe & arm (FTS&A) devices, two flight termination receivers (FTR), two explosive foil initiators (EFI) and destruct charge. This paper will discuss the current status of the development of these FTS components along with the process of obtaining the Flight Certification from Range and System Safety to fly this newly outfitted missile on a governmental test range.
|
235 |
Device drivers : a comparison of different development strategiesLoubser, Johannes Jacobus 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: Users are not supposed to modify an operating system kernel, but it is often necessary to
add a device driver for a new peripheral device. Device driver development is a difficult and
time-consuming process that must be performed by an expert. Drivers are difficult to debug
and a malfunctioning driver could cause the operating system to crash. Ways are therefore
needed to make the development of device drivers safer and easier.
A number of different device driver development methods are examined in this thesis. An
existing micro-kernel that supports in-kernel device drivers as well as extensible device drivers
has been modified to support user-level and loadable drivers. These extensions ensured that
all the development methods were implemented in the same environment and a comparison
could thus be made on a fair basis.
A comparison of the different methods with respect to the efficiency of the resulting device
driver, as well as the ease of the development process, is presented. / AFRIKAANSE OPSOMMING: Gebruikers is nie veronderstelom aan 'n bedryfstelsel te verander nie, maar tog is dit gereeld
nodig om 'n toesteldrywer vir 'n nuwe randapparaat by te voeg. Die ontwikkeling van 'n
toesteldrywer is 'n tydrowende en moeilike proses en moet deur 'n kundige aangepak word.
Toesteldrywers is moeilik om te ontfout en kan deur verkeerde werking die hele stelsel tot stilstand
bring. Daar is dus tegnieke nodig om die ontwikkeling van toestelhanteerders makliker
en veiliger te maak.
'n Aantal verskillende ontwikkelingsmetodes vir toesteldrywers word in hierdie tesis ondersoek.
'n Bestaande mikro-kern wat in-kern, sowel as uitbreibare toesteldrywers ondersteun, is
aangepas om gebruikersvlak en laaibare toestelhanteerders te ondersteun. Hierdie uitbreiding
het verseker dat al die ontwikkelingsmetodes in dieselfde omgewing geïmplementeer is. Dit
was dus moontlik om die metodes op 'n regverdige grondslag te vergelyk. Die vergelyking
is gedoen ten opsigte van die effektiwiteit van die resulterende toesteldrywer sowel as die
moeilikheidsgraad van die ontwikkelingsproses.
|
236 |
A DEVICE DRIVER ARCHITECTURE FOR TELEMETRY APPLICATIONSDiLemmo, Marc C. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / This paper illustrates a device driver implementation used to support a PC compatible telemetry device. Device requirements included operation on Windows NT 4.0, Windows 95, Windows NT 5.0 and Windows 98 platforms. A single device driver was not possible due to the differences between driver requirements on the various operating systems. The Windows Driver Model (WDM) was considered for NT 5.0 and Win98, however, NT 4.0 and Win95 does not support the WDM. To minimize software development and support efforts, it was clear that an architecture compatible to both WDM, NT 4.0 and Windows 95 needed to be developed. The resulting layered device driver architecture provides a common upper interface and uses a register based model to describe the hardware at the lower interface. The common upper interface is compatible with all of the target operating systems and presents a consistent Applications Programming Interface (API) for the telemetry application developer. The lower interface is specific for each platform but contains minimal device specific functionality. A simple register I/O driver is easily implemented using all of the target operating systems. The layered architecture and register based interface to the hardware results in a multiple operating system code set which differs only at the lowest layer.
|
237 |
A system to provide guidance to stroke patients during independent physiotherapyCooper, Joseph January 2014 (has links)
Stroke is a serious disease that leaves many sufferers physically disabled. Treatment resources are limited, meaning stroke patients, are in many cases, discharged prior to reaching their full potential of physical recovery. The hypothesis of this research is that a system that enables regular guided and monitored therapeutic exercises in the home can provide a means for stroke patients to achieve a higher level of physical rehabilitation. This research is based on the design, build and testing of an experimental prototype system to allow this, with the aim of investigating the feasibility and potential value for such systems. Any system to assist rehabilitation in the home must clearly be low cost, safe and easy to use. The prototype system therefore aimed to achieve these features as well as focusing on the upper limb. Literature is reviewed in the fields of stroke, human anatomy and mechanisms, motor performance, feedback during motor learning, and existing systems and technology. Interviews are also conducted with stroke physiotherapists to gain input and feedback on concepts that were generated. Although systems exist with similar aims to those mentioned in the hypothesis, there are some areas where investigation is lacking. The prototype system measures movement using a novel combination of gyro sensors and flex sensors. The prototype system is designed with a focus on the method of interaction with patients and the provision of guidance and feedback that simulates that provided by a physiotherapist. The prototype system also provides a unique combination of quantitative information to patients of their personal improvements and graphical feedback of their movements and target movements. Finally, a novel categorisation of movement synergism (a form of movement coordination) is established and a novel method for detecting movement synergism is developed and tested. Performance of the prototype hardware is tested, and it is concluded that identified requirements have been met, although variability of recorded data is high. Tests also indicate that the prototype system is capable of detecting movement synergism. Finally, a controlled test involving healthy participants is performed to investigate the efficacy of the prototype as a whole. It was found that use of the prototype system resulted in a statistically significant improvement in conformance to target movements (p < 0.05). Findings are discussed in detail and the hypothesis is concluded as being supported overall. Recommendations for future research are made.
|
238 |
High-throughput intracellular delivery of proteins and plasmidsPark, Seonhee 27 May 2016 (has links)
Intracellular delivery of macromolecules is crucial for the success of many research and clinical applications. Several conventional intracellular delivery methods have been used for many years but are still inadequate for several applications because of the issues associated with toxicity, low-throughput, and/or difficulty to target certain cell types. In this study, we developed and evaluated new high-throughput intracellular delivery methods for the efficient delivery of macromolecules while maintaining high cell viability. First, we studied the feasibility of using an array of nanoneedles, with sharp tip diameters in the range of tens of nanometers, to physically make transient holes in cell membranes for intracellular delivery. Puncture loading and centrifuge loading methods were developed and assessed for the effect of various experimental parameters on cell viability and delivery efficiency of fluorescent molecules. In both methods, high-throughput intracellular delivery was feasible by creating transient holes in cell membranes with the sharp tips of the nanoneedles. The second physical intracellular delivery method we studied was a novel microfluidic device that created transient holes in the cell membrane by mechanical deformation and shear stress to the cell. We observed efficient delivery of fluorescent molecules and studied the effect of device design and flow pressure on the delivery efficiency compared to data in the literature. We accounted for cell loss and clogging in the microfluidic devices and determined the true loss of cell viability associated with this method. Lastly, we investigated the possibility of intracellular delivery using nanoparticles on a leukemia cell line. Among number of materials for nanoparticles tested, mesoporous silica/poly-L-lysine nanoparticles were selected for further intracellular delivery study based on cell viability and intracellular delivery capability. We demonstrated the co-delivery of protein and plasmid by encapsulating into and coating onto the surface of the nanoparticles, respectively, which would be advantageous for certain therapeutic strategies. In summary, this work introduced two new intracellular delivery methods involving nanoneedles and novel nanoparticles, and provided an early, independent assessment of microfluidic delivery, showing the strengths and weaknesses of each method. These methods can be further optimized for a number of laboratory and clinical applications with continued research.
|
239 |
Implementation of Sub-GHz Real Time RadioÅstrand, Lisa January 2016 (has links)
The field of automation and smart devices is currently expanding. As most devices require wireless communication, the market for low budget, low power radios is growing rapidly. Many applications, such as the remote control of machines, have real time requirements with minimal latency. In this report, the market of wireless chips in the sub-GHz region has been investigated in order to give Syntronic AB an insight of the current market. Several key features such as range, data rate and output power were ranked among the available chips. To provide Syntronic with a marketing tool when reaching out to customers in the remote control field, a demonstration prototype (demo) was implemented using one of the radio chips from the list. The demo shows real time requirements with low latency between two wireless nodes. The first node takes movement data from a computer mouse and transmits it to the other node controlling an array of light emitting diodes (LEDs). This report contains the selection of radio configurations, design of a new wireless communications protocol, and implementation of the system in hardware and software. Measurements show a latency of 3.6 ms and a range of approximately 450 m which is regarded satisfactory.
|
240 |
A multi-modal device for application in microsleep detectionKnopp, Simon James January 2015 (has links)
Microsleeps and other lapses of responsiveness can have severe, or even fatal, consequences for people who must maintain high levels of attention on monotonous tasks for long periods of time, e.g., commercial vehicle drivers, pilots, and air-traffic controllers. This thesis describes a head-mounted system which is the first prototype in the process of creating a system that can detect (and possibly predict) these lapses in real time. The system consists of a wearable device which captures multiple physiological signals from the wearer and an extensible software framework for imple- menting signal processing algorithms. Proof-of-concept algorithms are implemented and used to demonstrate that the system can detect simulated microsleeps in real time.
The device has three sensing modalities in order to get a better estimate of the user's cognitive state than by any one alone. Firstly, it has 16 channels of EEG (8 currently in use) captured by 24-bit ADCs sampling at 250 Hz. The EEG is acquired by custom-built dry electrodes consisting of spring-loaded, gold-plated pins. Secondly, the device has a miniature video camera mounted below one eye, providing 320 x 240 px greyscale video of the eye at 60 fps. The camera module includes infrared illumination so that it can operate in the dark. Thirdly, the device has a six-axis IMU to measure the orientation and movement of the head. These sensors are connected to a Gumstix computer-on-module which transmits the captured data to a remote computer via Wi-Fi. The device has a battery life of about 7.4 h.
In addition to this hardware, software to receive and analyse data from the head-mounted device was developed. The software is built around a signal processing pipeline that has been designed to encapsulate a wide variety of signal processing algorithms; feature extractors calculate salient properties of the input data and a classifier fuses these features to determine the user's cognitive state. A plug-in system is provided which allows users to write their own signal processing algorithms and to experiment with different combinations of feature extractors and classifiers. Because of this flexible modular design, the system could also be used for applications other than lapse detection‒any application which monitors EEG, eye video, and head movement can be implemented by writing appropriate signal processing plug-ins, e.g., augmented cognition or passive BCIs. The software also provides the ability to configure the device's hardware, to save data to disk, and to monitor the system in real time. Plug-ins can be implemented in C++ or Python.
A series of validation tests were carried out to confirm that the system operates as intended. Most of the measured parameters were within the expected ranges: EEG amplifier noise = 0.14 μVRMS input-referred, EEG pass band = DC to 47 Hz, camera focus = 2.4 lp/mm at 40 mm, and total latency < 100 ms. Some parameters were worse than expected but still sufficient for effective operation: EEG amplifier CMRR ≥ 82 dB, EEG cross-talk = -17.4 dB, and IMU sampling rate = 10 Hz. The contact impedance of the dry electrodes, measured to be several hundred kilohms, was too high to obtain clean EEG.
Three small-scale experiments were done to test the performance of the device in operation on people. The first two demonstrated that the pupil localization algorithm produces PERCLOS values close to those from a manually-rated gold standard and is robust to changes in ambient light levels, iris colour, and the presence of glasses. The final experiment demonstrated that the system is capable of capturing all three physiological signals, transmitting them to the remote computer in real time, extracting features from each signal, and classifying simulated microsleeps from the extracted features. However, this test was successful only when using conventional wet EEG electrodes instead of the dry electrodes built into the device; it will be necessary to find replacement dry electrodes for the device to be useful.
The device and associated software form a platform which other researchers can use to develop algorithms for lapse detection. This platform provides data capture hardware and abstracts away the low-level software details so that other researchers are free to focus solely on developing signal processing techniques. In this way, we hope to enable progress towards a practical real-time, real-world lapse detection system.
|
Page generated in 0.3313 seconds