Spelling suggestions: "subject:"device devevelopment"" "subject:"device agentdevelopment""
1 |
The design, construction and operation of practical thin film superconducting quantum interference devices (SQUIDs)Hutson, D. January 1987 (has links)
No description available.
|
2 |
PROMOTING BREAKTHROUGH MEDICAL INNOVATION: INSIGHTS FROM AN ANALYSIS OF RECENT TRANSFORMATIVE DRUGS, BIOLOGICS AND MEDICAL DEVICESXu, Shuai 02 May 2016 (has links)
Given the recent concern from multiple healthcare stakeholders that the pipeline of medical innovation is slowing, this thesis provides insights on how to spur breakthrough medical innovation in present day. The findings and recommendations are derived from one of the largest collections of interview transcripts from biomedical innovators (n=143) responsible for developing critical devices, drugs and diagnostics used in medicine today. An exemplary case (coronary artery stent) was selected for an in-depth analysis, which included a detailed recounting of stent development and an exhaustive analysis of the patent literature. External factors either catalyzed (e.g., supportive institutions, strong underlying science and collaboration) or hindered (e.g., technology transfer challenges, lack of funding and onerous conflict of interest rules) the development process. Strategies aimed towards promoting transformative medical innovation should focus on institutional-level policies targeting early stages of innovation. This includes providing individuals with unique expertise with the capacity to pursue innovative work. Technology transfer processes should be simplified to enable collaboration for individuals between institutions with disparate expertise. Policymakers should continue to support basic science research, which underlies future innovations. In contrast, policies that increase reimbursement or reduce taxes for industry or extend patent terms are less likely to impact transformative innovation.
|
3 |
Portable Sensors for Breath AnalysisJanuary 2013 (has links)
abstract: Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss. / Dissertation/Thesis / Ph.D. Chemistry 2013
|
4 |
A institucionalização de um aparelho formador: o caso da Secretaria de Saúde do Estado da BahiaRamos, Alexandre de Souza January 2011 (has links)
Submitted by Maria Creuza Silva (mariakreuza@yahoo.com.br) on 2013-05-14T13:14:37Z
No. of bitstreams: 1
Diss Alexandre Ramos. 2011.pdf: 1695753 bytes, checksum: e5233967322d8bac5a104871c30f9399 (MD5) / Approved for entry into archive by Maria Creuza Silva(mariakreuza@yahoo.com.br) on 2013-05-14T13:16:02Z (GMT) No. of bitstreams: 1
Diss Alexandre Ramos. 2011.pdf: 1695753 bytes, checksum: e5233967322d8bac5a104871c30f9399 (MD5) / Made available in DSpace on 2013-05-14T13:16:02Z (GMT). No. of bitstreams: 1
Diss Alexandre Ramos. 2011.pdf: 1695753 bytes, checksum: e5233967322d8bac5a104871c30f9399 (MD5)
Previous issue date: 2011 / O presente estudo procura analisar o processo de institucionalização dos espaços para formação e desenvolvimento de Recursos Humanos em Saúde – RHS na Secretaria de Saúde do Estado da Bahia - SESAB, entre 1971 e 2006. Observando as modificações no campo da saúde e a evolução histórica e política brasileira e baiana, a pesquisa buscou compreender a criação, desenvolvimento e (re)estruturação do Aparelho para Formação e Desenvolvimento de RHS (AFD-RHS) na SESAB, em três períodos históricos (1971 - 1986, 1987 - 1990 e 1991 - 2006). No primeiro período, sob a face do governo militar, se organizam movimentos para o surgimento de um espaço de formação dentro dessa instituição. No segundo período observa-se certa ruptura com a linha política e ideológica que dominava a Bahia, com repercussões para o setor saúde e para o AFD-RHS. No terceiro período, houve o retorno e continuidade de aliados que se revezavam no poder no chamado Carlismo. O desenho desse estudo de caso histórico privilegiou a investigação qualitativa de caráter exploratório, com pesquisa documental e entrevistas, voltadas para ex-dirigentes dos órgãos de RHS da SESAB. Na fundamentação teórica utilizou-se o referencial elaborado por Mario Testa para análise de instituições, considerando os diferentes tipos de poder setorial (técnico, administrativo, político) e as estratégias de hegemonia. Os resultados apresentados indicam a trajetória de expansão do AFD-RHS, destacando a ação dos sujeitos na conformação dessa estrutura. Condiz com algumas reflexões no sentido de interpretar as razões quanto a criação, surgimento ou (re)estruturação (motivo-porque) desse aparelho e quanto à necessidade ou demanda social (motivo-para) que tem buscado atender. / Salvador
|
5 |
Development of a Flexible Software Framework for Biosignal PI : An Open-Source Biosignal Acquisition and Processing System / Utveckling av ett Flexibelt Mjukvaruramverk for Biosignal PI : ett system för insamling och bearbetning av biomedicinska signaler med öppen källkodRöstin, Martin January 2016 (has links)
As the world population ages, the healthcare system is facing new challenges in treating more patients at a lower cost than today. One trend in addressing this problem is to increase the opportunities of in-home care. To achieve this there is a need for safe and cost-effective monitoring systems. Biosignal PI is an ongoing open-source project created to develop a flexible and affordable platform for development of stand-alone devices able to measure and process physiological signals. This master thesis project, performed at the department of Medical Sensors, Signals and System at the School of Technology and Health, aimed at further develop the Biosignal PI software by constructing a new flexible software framework architecture that could be used for measurement and processing of different types of biosignals. The project also aimed at implementing features for Heart Rate Variability(HRV) Analysis in the Biosignal PI software as well as developing a graphical user interface(GUI) for the Raspberry PI hardware module PiFace Control and Display. The project developed a new flexible abstract software framework for the Biosignal PI. The new framework was constructed to abstract all hardware specifics into smaller interchangeable modules, with the idea of the modules being independent in handling their specific task making it possible to make changes in the Biosignal PI software without having to rewrite all of the core. The new developed Biosignal PI software framework was implemented into the existing hardware setup consisting of an Raspberry PI, a small and affordable single-board computer, connected to ADAS1000, a low power analog front end capable of recording an Electrocardiography(ECG). To control the Biosignal PI software two different GUIs were implemented. One GUI extending the original software GUI with the added feature of making it able to perform HRV-Analysis on the Raspberry PI. This GUI requires a mouse and computer screen to function. To be able to control the Biosignal PI without mouse the project also created a GUI for the PiFace Control and Display. The PiFace GUI enables the user to collect and store ECG signals without the need of an big computer screen, increasing the mobility of the Biosignal PI device. To help with the development process and also to make the project more compliant with the Medical Device Directive a couple of development tools were implemented such as a CMake build system, integrating the project with the Googletest testing framework for automated testing and the implementation of the document generator software Doxygen to be able to create an Software Documentation. The Biosignal PI software developed in this thesis is available through Github at https://github.com/biosignalpi/Version-A1-Rapsberry-PI / Allt eftersom världens befolkning åldras, ställs sjukvården inför nya utmaningar i att behandla fler patienter till en lägre kostnad än idag. En trend för att lösa detta problem är att utöka möjligheterna till vård i hemmet.För att kunna göra detta finns det ett ökande behov av säkra och kostnadseffektiva patientövervakningssystem. Biosignal PI är ett pågående projekt med öppen källkod som skapats för att utveckla en flexibel och prisvärd plattform för utveckling av fristående enheter som kan mäta och bearbeta olika fysiologiska signaler. Detta examensarbete genomfördes vid institutionen för medicinska sensorer, signaler och system vid Skolan för Teknik och Hälsa. Projektet syftade till att vidareutveckla den befintliga mjukvaran för Biosignal PI genom att skapa ett nytt flexibelt mjukvaruramverk som kan användas för mätning och bearbetning av olika typer av biosignaler.Projektet syftade också till att utvidga mjukvaran och lägga till funktioner för att kunna genomföra hjärtfrekvensvariabilitets(HRV) analys i Biosignal PIs mjukvara, samt att utveckla ett grafiskt användargränssnitt(GUI) för hårdvarumodulen PiFace Control and Display. Projektet har utvecklat ett nytt flexibelt mjukvaruramverk för Biosignal PI. Det nya ramverket konstruerades för att abstrahera alla hårdvaruspecifika delar in i mindre utbytbara moduler, med tanken att modulerna ska vara oberoende i hur de hanterar sin specifika uppgift. På så sätt ska det vara möjligt att göra ändringar i Biosignal PIs programvara utan att behöva skriva om hela mjukvaran.Det nyutvecklade Biosignal PI ramverket implementerades i det befintliga hårdvaru systemet, som består av en Raspberry PI, liten och prisvärd enkortsdator, ansluten till ADAS1000, en analog hårdvarumodul med möjlighet att registrera ett elektrokardiografi(EKG/ECG). För att kontrollera Biosignal PI programmet har två olika grafiska användargränssnitt skapats.Det ena gränssnitt är en utvidgning av original programvaran med tillagd funktionalitet för att kunna göra HRV-Analys på Raspberry PI, detta gränssnitt kräver dock mus och dataskärm för att kunna användas.För att kunna styra Biosignal PI utan mus och skärm skapades det även ett gränssnitt för PiFace Control and Display. PiFace gränssnittet gör det möjligt för användaren att samla in och lagra EKG-signaler utan att behöva en stor datorskärm, på så sätt kan man öka Biosignal PI systemets mobilitet. För att underlätta utvecklingsprocessen, samt göra projektet mer förenligt med det medicintekniska regelverket, har ett par utvecklingsverktyg integrerats till Biosignal PI projektet såsom CMake för kontroll av kompileringsprocessen, test ramverket Googletest för automatiserad testning samt integrering med dokumentations generatorn Doxygen för att kunna skapa en dokumentation av mjukvaran.
|
Page generated in 0.075 seconds