• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparação de algoritmos de aprendizagem de máquina para construção de modelos preditivos de diabetes não diagnosticado / Comparison of machine learning algorithms to build predictive models of undiagnosed diabetes

Olivera, André Rodrigues January 2016 (has links)
O objetivo deste trabalho foi desenvolver e comparar modelos preditivos para detecção de diabetes não diagnosticado utilizando diferentes algoritmos de aprendizagem de máquina. Os dados utilizados foram do Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil), um conjunto bastante completo com aproximadamente 15 mil participantes. As variáveis preditoras foram selecionadas de forma que sejam informações simples dos participantes, sem necessidade de exames laboratoriais. Os testes foram realizados em quatro etapas: ajuste dos parâmetros através de validação cruzada, seleção automática de variáveis, validação cruzada para estimativa de erros e teste de generalização em um conjunto independente dos dados. Os resultados demonstram a viabilidade de utilizar informações simples para detectar casos diabetes não diagnosticado na população. Além disso, os resultados comparam algoritmos de aprendizagem de máquina e mostram a possibilidade de utilizar outros algoritmos, alternativamente à Regressão Logística, para a construção de modelos preditivos. / The aim of this work was to develop and to compare predictive models to detect undiagnosed diabetes using different machine learning algorithms and data from the Longitudinal Study of Adult Health (ELSA-Brasil), which collected an extensive dataset from around 15 thousand participants. The predictor variables were selected from literature research. The tests were performed in four steps: parameter tuning with cross validation, automatic feature selection, cross validation to error evaluation and generalization test in an independent dataset. The results show the feasibility of extracting useful information from ELSA-Brasil as well as the potential to use other algorithms, in addition to logistic regression, to build predictive models from ELSA-Brasil dataset.
2

Comparação de algoritmos de aprendizagem de máquina para construção de modelos preditivos de diabetes não diagnosticado / Comparison of machine learning algorithms to build predictive models of undiagnosed diabetes

Olivera, André Rodrigues January 2016 (has links)
O objetivo deste trabalho foi desenvolver e comparar modelos preditivos para detecção de diabetes não diagnosticado utilizando diferentes algoritmos de aprendizagem de máquina. Os dados utilizados foram do Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil), um conjunto bastante completo com aproximadamente 15 mil participantes. As variáveis preditoras foram selecionadas de forma que sejam informações simples dos participantes, sem necessidade de exames laboratoriais. Os testes foram realizados em quatro etapas: ajuste dos parâmetros através de validação cruzada, seleção automática de variáveis, validação cruzada para estimativa de erros e teste de generalização em um conjunto independente dos dados. Os resultados demonstram a viabilidade de utilizar informações simples para detectar casos diabetes não diagnosticado na população. Além disso, os resultados comparam algoritmos de aprendizagem de máquina e mostram a possibilidade de utilizar outros algoritmos, alternativamente à Regressão Logística, para a construção de modelos preditivos. / The aim of this work was to develop and to compare predictive models to detect undiagnosed diabetes using different machine learning algorithms and data from the Longitudinal Study of Adult Health (ELSA-Brasil), which collected an extensive dataset from around 15 thousand participants. The predictor variables were selected from literature research. The tests were performed in four steps: parameter tuning with cross validation, automatic feature selection, cross validation to error evaluation and generalization test in an independent dataset. The results show the feasibility of extracting useful information from ELSA-Brasil as well as the potential to use other algorithms, in addition to logistic regression, to build predictive models from ELSA-Brasil dataset.
3

Comparação de algoritmos de aprendizagem de máquina para construção de modelos preditivos de diabetes não diagnosticado / Comparison of machine learning algorithms to build predictive models of undiagnosed diabetes

Olivera, André Rodrigues January 2016 (has links)
O objetivo deste trabalho foi desenvolver e comparar modelos preditivos para detecção de diabetes não diagnosticado utilizando diferentes algoritmos de aprendizagem de máquina. Os dados utilizados foram do Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil), um conjunto bastante completo com aproximadamente 15 mil participantes. As variáveis preditoras foram selecionadas de forma que sejam informações simples dos participantes, sem necessidade de exames laboratoriais. Os testes foram realizados em quatro etapas: ajuste dos parâmetros através de validação cruzada, seleção automática de variáveis, validação cruzada para estimativa de erros e teste de generalização em um conjunto independente dos dados. Os resultados demonstram a viabilidade de utilizar informações simples para detectar casos diabetes não diagnosticado na população. Além disso, os resultados comparam algoritmos de aprendizagem de máquina e mostram a possibilidade de utilizar outros algoritmos, alternativamente à Regressão Logística, para a construção de modelos preditivos. / The aim of this work was to develop and to compare predictive models to detect undiagnosed diabetes using different machine learning algorithms and data from the Longitudinal Study of Adult Health (ELSA-Brasil), which collected an extensive dataset from around 15 thousand participants. The predictor variables were selected from literature research. The tests were performed in four steps: parameter tuning with cross validation, automatic feature selection, cross validation to error evaluation and generalization test in an independent dataset. The results show the feasibility of extracting useful information from ELSA-Brasil as well as the potential to use other algorithms, in addition to logistic regression, to build predictive models from ELSA-Brasil dataset.

Page generated in 0.0689 seconds