• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 49
  • 14
  • 8
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 201
  • 201
  • 101
  • 56
  • 54
  • 51
  • 35
  • 28
  • 28
  • 25
  • 24
  • 23
  • 22
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Fundus image analysis for automatic screening of ophthalmic pathologies

Colomer Granero, Adrián 26 March 2018 (has links)
En los ultimos años el número de casos de ceguera se ha reducido significativamente. A pesar de este hecho, la Organización Mundial de la Salud estima que un 80% de los casos de pérdida de visión (285 millones en 2010) pueden ser evitados si se diagnostican en sus estadios más tempranos y son tratados de forma efectiva. Para cumplir esta propuesta se pretende que los servicios de atención primaria incluyan un seguimiento oftalmológico de sus pacientes así como fomentar campañas de cribado en centros proclives a reunir personas de alto riesgo. Sin embargo, estas soluciones exigen una alta carga de trabajo de personal experto entrenado en el análisis de los patrones anómalos propios de cada enfermedad. Por lo tanto, el desarrollo de algoritmos para la creación de sistemas de cribado automáticos juga un papel vital en este campo. La presente tesis persigue la identificacion automática del daño retiniano provocado por dos de las patologías más comunes en la sociedad actual: la retinopatía diabética (RD) y la degenaración macular asociada a la edad (DMAE). Concretamente, el objetivo final de este trabajo es el desarrollo de métodos novedosos basados en la extracción de características de la imagen de fondo de ojo y clasificación para discernir entre tejido sano y patológico. Además, en este documento se proponen algoritmos de pre-procesado con el objetivo de normalizar la alta variabilidad existente en las bases de datos publicas de imagen de fondo de ojo y eliminar la contribución de ciertas estructuras retinianas que afectan negativamente en la detección del daño retiniano. A diferencia de la mayoría de los trabajos existentes en el estado del arte sobre detección de patologías en imagen de fondo de ojo, los métodos propuestos a lo largo de este manuscrito evitan la necesidad de segmentación de las lesiones o la generación de un mapa de candidatos antes de la fase de clasificación. En este trabajo, Local binary patterns, perfiles granulométricos y la dimensión fractal se aplican de manera local para extraer información de textura, morfología y tortuosidad de la imagen de fondo de ojo. Posteriormente, esta información se combina de diversos modos formando vectores de características con los que se entrenan avanzados métodos de clasificación formulados para discriminar de manera óptima entre exudados, microaneurismas, hemorragias y tejido sano. Mediante diversos experimentos, se valida la habilidad del sistema propuesto para identificar los signos más comunes de la RD y DMAE. Para ello se emplean bases de datos públicas con un alto grado de variabilidad sin exlcuir ninguna imagen. Además, la presente tesis también cubre aspectos básicos del paradigma de deep learning. Concretamente, se presenta un novedoso método basado en redes neuronales convolucionales (CNNs). La técnica de transferencia de conocimiento se aplica mediante el fine-tuning de las arquitecturas de CNNs más importantes en el estado del arte. La detección y localización de exudados mediante redes neuronales se lleva a cabo en los dos últimos experimentos de esta tesis doctoral. Cabe destacar que los resultados obtenidos mediante la extracción de características "manual" y posterior clasificación se comparan de forma objetiva con las predicciones obtenidas por el mejor modelo basado en CNNs. Los prometedores resultados obtenidos en esta tesis y el bajo coste y portabilidad de las cámaras de adquisión de imagen de retina podrían facilitar la incorporación de los algoritmos desarrollados en este trabajo en un sistema de cribado automático que ayude a los especialistas en la detección de patrones anomálos característicos de las dos enfermedades bajo estudio: RD y DMAE. / In last years, the number of blindness cases has been significantly reduced. Despite this promising news, the World Health Organisation estimates that 80% of visual impairment (285 million cases in 2010) could be avoided if diagnosed and treated early. To accomplish this purpose, eye care services need to be established in primary health and screening campaigns should be a common task in centres with people at risk. However, these solutions entail a high workload for trained experts in the analysis of the anomalous patterns of each eye disease. Therefore, the development of algorithms for automatic screening system plays a vital role in this field. This thesis focuses on the automatic identification of the retinal damage provoked by two of the most common pathologies in the current society: diabetic retinopathy (DR) and age-related macular degeneration (AMD). Specifically, the final goal of this work is to develop novel methods, based on fundus image description and classification, to characterise the healthy and abnormal tissue in the retina background. In addition, pre-processing algorithms are proposed with the aim of normalising the high variability of fundus images and removing the contribution of some retinal structures that could hinder in the retinal damage detection. In contrast to the most of the state-of-the-art works in damage detection using fundus images, the methods proposed throughout this manuscript avoid the necessity of lesion segmentation or the candidate map generation before the classification stage. Local binary patterns, granulometric profiles and fractal dimension are locally computed to extract texture, morphological and roughness information from retinal images. Different combinations of this information feed advanced classification algorithms formulated to optimally discriminate exudates, microaneurysms, haemorrhages and healthy tissues. Through several experiments, the ability of the proposed system to identify DR and AMD signs is validated using different public databases with a large degree of variability and without image exclusion. Moreover, this thesis covers the basics of the deep learning paradigm. In particular, a novel approach based on convolutional neural networks is explored. The transfer learning technique is applied to fine-tune the most important state-of-the-art CNN architectures. Exudate detection and localisation tasks using neural networks are carried out in the last two experiments of this thesis. An objective comparison between the hand-crafted feature extraction and classification process and the prediction models based on CNNs is established. The promising results of this PhD thesis and the affordable cost and portability of retinal cameras could facilitate the further incorporation of the developed algorithms in a computer-aided diagnosis (CAD) system to help specialists in the accurate detection of anomalous patterns characteristic of the two diseases under study: DR and AMD. / En els últims anys el nombre de casos de ceguera s'ha reduït significativament. A pesar d'este fet, l'Organització Mundial de la Salut estima que un 80% dels casos de pèrdua de visió (285 milions en 2010) poden ser evitats si es diagnostiquen en els seus estadis més primerencs i són tractats de forma efectiva. Per a complir esta proposta es pretén que els servicis d'atenció primària incloguen un seguiment oftalmològic dels seus pacients així com fomentar campanyes de garbellament en centres regentats per persones d'alt risc. No obstant això, estes solucions exigixen una alta càrrega de treball de personal expert entrenat en l'anàlisi dels patrons anòmals propis de cada malaltia. Per tant, el desenrotllament d'algoritmes per a la creació de sistemes de garbellament automàtics juga un paper vital en este camp. La present tesi perseguix la identificació automàtica del dany retiniano provocat per dos de les patologies més comunes en la societat actual: la retinopatia diabètica (RD) i la degenaración macular associada a l'edat (DMAE) . Concretament, l'objectiu final d'este treball és el desenrotllament de mètodes novedodos basats en l'extracció de característiques de la imatge de fons d'ull i classificació per a discernir entre teixit sa i patològic. A més, en este document es proposen algoritmes de pre- processat amb l'objectiu de normalitzar l'alta variabilitat existent en les bases de dades publiques d'imatge de fons d'ull i eliminar la contribució de certes estructures retinianas que afecten negativament en la detecció del dany retiniano. A diferència de la majoria dels treballs existents en l'estat de l'art sobre detecció de patologies en imatge de fons d'ull, els mètodes proposats al llarg d'este manuscrit eviten la necessitat de segmentació de les lesions o la generació d'un mapa de candidats abans de la fase de classificació. En este treball, Local binary patterns, perfils granulometrics i la dimensió fractal s'apliquen de manera local per a extraure informació de textura, morfologia i tortuositat de la imatge de fons d'ull. Posteriorment, esta informació es combina de diversos modes formant vectors de característiques amb els que s'entrenen avançats mètodes de classificació formulats per a discriminar de manera òptima entre exsudats, microaneurismes, hemorràgies i teixit sa. Per mitjà de diversos experiments, es valida l'habilitat del sistema proposat per a identificar els signes més comuns de la RD i DMAE. Per a això s'empren bases de dades públiques amb un alt grau de variabilitat sense exlcuir cap imatge. A més, la present tesi també cobrix aspectes bàsics del paradigma de deep learning. Concretament, es presenta un nou mètode basat en xarxes neuronals convolucionales (CNNs) . La tècnica de transferencia de coneixement s'aplica per mitjà del fine-tuning de les arquitectures de CNNs més importants en l'estat de l'art. La detecció i localització d'exudats per mitjà de xarxes neuronals es du a terme en els dos últims experiments d'esta tesi doctoral. Cal destacar que els resultats obtinguts per mitjà de l'extracció de característiques "manual" i posterior classificació es comparen de forma objectiva amb les prediccions obtingudes pel millor model basat en CNNs. Els prometedors resultats obtinguts en esta tesi i el baix cost i portabilitat de les cambres d'adquisión d'imatge de retina podrien facilitar la incorporació dels algoritmes desenrotllats en este treball en un sistema de garbellament automàtic que ajude als especialistes en la detecció de patrons anomálos característics de les dos malalties baix estudi: RD i DMAE. / Colomer Granero, A. (2018). Fundus image analysis for automatic screening of ophthalmic pathologies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/99745

Page generated in 0.0691 seconds