Spelling suggestions: "subject:"diabetische kardiomyopathie"" "subject:"diabetische cardiomyopathie""
1 |
Untersuchung zum Mechanismus von SGLT2-Inhibitoren und GLP1-Rezeptoragonisten in zellulären Modellen von diabetischer KardiomyopathieHasse, Marcel 20 March 2025 (has links)
Mit SGLT2-Inhibitoren (SGLT2i) und GLP1-Rezeptor Agonisten (GLP1-RA) sind Arzneistoffe mit einem kardioprotektiven Effekt verfügbar, die zur Therapie von Patienten mit Typ-2-Diabetes und hohem kardiovaskulären Risiko empfohlen werden. Die Frage nach ihrem kardioprotektiven Wirkmechanismus, insbesondere ob direkte Wirkungen am Herzen vorliegen, ist jedoch unklar. Zur Untersuchung dieser Fragestellung wurde in dieser Arbeit mittels, aus humanen induzierten pluripotenten Stammzellen, differenzierten Kardiomyozyten (iPS-KM) ein Modell zur in vitro-Modellierung der diabetischen Kardiomyopathie etabliert, mit Hilfe dessen der Effekt des SGLT2i Empagliflozin und des GLP-RA Liraglutid getestet wurde. Zunächst wurde die Expression potenzieller Zielstrukturen beider Pharmaka, SGLT1, SGLT2, NHE-1 sowie GLP1R in verschiedenen kardialen Zelltypen untersucht. Dazu wurden atriale (aKM) und ventrikuläre KM (vKM) aus iPS-Zellen differenziert und deren kammerspezifische Eigenschaften anhand der Expression atrium- bzw. ventrikelspezifischer Gene sowie anhand der Kontraktionseigenschaften demonstriert. Weiterhin wurden humane ventrikuläre (HVF) und atriale Fibroblasten (HAF) sowie Proben gesunden Herzgewebes untersucht. Eine Expression von SGLT1, NHE-1 und GLP1R konnte in humanem Herzgewebe, aKM, vKM, HAF und HVF nachgewiesen werden. Die Expression des SGLT2 konnte hingegen in keiner kardialen Probe, sondern lediglich in humanem Nierengewebe nachgewiesen werden. Mittels vKM wurde die diabetische Kardiomyopathie durch 10-tägige Kultivierung unter erhöhten Glucosekonzentrationen (HG, 22 mM) mit ET-1 und Kortisol, die bei Diabetikern erhöhte Plasmalevel aufweisen, modelliert. Als Kontrollbedingung wurde eine Glukosekonzentration von 7 mM verwendet und weiterhin ebenso der Effekt von HG allein sowie eines osmotischen Kontrollmediums mit 7 mM Glukose und 15 mM Mannose untersucht. Für alle Veränderungen konnte so nachverfolgt werden, ob diese durch HG-Bedingungen, einen erhöhten osmotischen Druck oder den Zusatz von ET-1 und Kortisol induziert wurden. Mit dem DKM konnten verschiedene Charakteristika der diabetischen Kardiomyopathie in vitro rekapituliert werden. Im Vergleich zur Kontrollbedingung zeigte sich: 1) eine Abnahme der Zellvitalität, basierend auf erhöhter LDH-Aktivität im Überstand und verringertem zellulären MTT-Umsatz, 2) Merkmale einer Hyperkontraktilität, anhand gesteigerter maximaler Kontraktionsgeschwindigkeit und Verschiebung, 3) eine Steigerung der NPPB-Expression und damit Anzeichen einer Hypertrophie sowie 4) Trends hin zu einer Verringerung der Expression der Glukosetransporter GLUT1 und GLUT4, Hexokinase 2 (HK2) und der Carnitin-Palmitoyltransferase 1B (CPT1B) als Induktion eines veränderten Metabolismus nach Behandlung im DKM. Die Anwendung der DKM-Kulturbedingungen für Organoide, die aus vKM und HVF geformt wurden, zeigte ebenso eine Vergrößerung des Organoidumfangs und damit Zeichen der Hypertrophie, im Vergleich zur Kontrollbedingung.
In weiteren Studien wurde das DKM eingesetzt, um potenzielle direkte kardiale Effekte von Empagliflozin und Liraglutid im 2D-Monolayer- und 3D-Organoidmodell zu untersuchen. Untersuchungen in Monolayerkulturen zeigten, dass Empagliflozin und Liraglutid keinerlei Effekt auf die Verringerung der Zellvitaliät, die Veränderungen der kontraktilen Aktivität und die Expression von NPPB sowie der Gene des Zellmetabolismus (GLUT1, GLUT4, HK2, CPT1B) hatten. Auch im 3D-Modell hatte keine der Substanzen einen Einfluss auf die Vergrößerung der Organoide unter DKM-Kulturbedingungen.
Zusammenfassend konnte im Rahmen dieser Arbeit die Expression des SGLT1, NHE-1 und GLP1R als potenzielle Zielstrukturen von SGLT2i und GLP1-RA auf niedrigem Level in iPS-KM sowie kardialen Fibroblasten nachgewiesen werden. Weiterhin wurde ein Modell etabliert, mit dem eine Verringerung der Vitalität, Hypertrophie sowie Veränderungen in der Expression von Stoffwechselgenen, als typische Merkmale der diabetischen Kardiomyopathie in iPS-KM in vitro abgebildet werden können. Direkte kardiale Effekte von Empagliflozin und Liraglutid konnten, trotz der Untersuchung einer Vielzahl von Parametern, nicht detektiert werden.
|
2 |
Einfluss einer diabetischen Stoffwechsellage auf die diastolische Funktion des linken Ventrikels / Influence of diabetes mellitus on left ventricular diastolic functionSchönbrunn, Lisa Christiane 10 August 2011 (has links)
No description available.
|
3 |
Loss-of-function of leptin receptor impairs metabolism in human cardiomyocytesStrano, Anna 20 September 2023 (has links)
Background and aims: Leptin resistance or leptin signalling deficiency are associated with increased risk of diabetic cardiomyopathy and heart failure, which is a leading cause of obesity- and diabetes type 2 (T2DM)-related morbidity and mortality. Various metabolic disturbances are involved in this pathogenesis, such as elevated glucose and fatty acid levels, insulin resistance and altered myocardial substrate utilization. Rodent models provided useful insights into the underlying molecular mechanisms of obese- and T2DM-associated cardiometabolic diseases, however, they cannot fully recapitulate the disease phenotype of obese or T2DM patients. The aims of this study were to study the effect of leptin receptor (LEPR) mutations on the leptin-mediated signalling pathways in human cardiomyocytes, and to investigate glucose and fatty acid metabolism in the heart under (patho)physiological conditions. Methods and results: To study the role of LEPR in human cardiomyocytes (CMs), human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were used as a model. In the first part of this study, LEPR expression and function was investigated in wild type (WT)-iPSC-CMs by PCR and Western Blot. LEPR protein expression was almost not detectable in iPSCs and during early cardiac differentiation stages, however mRNA LEPR expression was comparable in the different steps of cardiac development. Importantly, LEPR protein expression was observed in WT-iPSC-CMs at the maturation stages, indicating that LEPR plays an important role in matured CMs. Thanks to CRISPR/Cas9 technology, LEPR mutations were introduced into iPSCs. Among the several clones obtained, 1B2 LEPRΔ/Δ-iPSC line was fully characterized and showed normal capacity to differentiate into spontaneously beating CMs. Although the B27 medium represents a well-established medium to cultivate iPSC-CMs, it has limitations for studying CM metabolism due to its high concentration of insulin and glucose, but low concentration of fatty acids. Physiological medium condition (F2) including physiological range of glucose, insulin and fatty acids was found to be fundamental to study LEPR signalling pathway in iPSC-CMs. Western blot analysis showed functional LEPR downstream pathway activation in WT-iPSC-CMs, while the absence of LEPR function was demonstrated in LEPRΔ/Δ-iPSC-CMs cultured in F2 medium. Moreover, improved medium condition, offered by the F2 medium, ameliorates insulin sensitivity as result of increased insulin-dependent AKT phosphorylation in WT-iPSC-CMs, while loss of LEPR function was associated with downregulation of insulin pathway activation. Additionally, leptin direct effect was observed on the regulation of glucose metabolism in WT-iPSC-CMs by reducing glycolytic fluxes, which was not observed in LEPRΔ/Δ-iPSC-CMs, as measured by 13C-isotope-assisted glucose metabolic flux. These data indicate that the signalling interaction between insulin and leptin is important in regulation of glucose metabolism and is abolished in LEPRΔ/Δ-iPSC-CMs. The matured WT-iPSC-CMs in F2 medium display adult CM-like metabolic phenotype such as enhanced mitochondrial respiration and glycolytic function, as measured by Seahorse analyser, compared to the same group cultured in the B27 medium. The mutation generated in LEPRΔ/Δ-iPSC-CMs caused an “energy starvation” status which led to increased AMPK phosphorylation compared to the WT group in B27 medium, which was associated with lower mitochondrial oxygen consumption rate (OCR) linked basal respiration and ATP production. In the next part of this study, the long-term leptin treatment of iPSC-CMs under physiological medium conditions in the presence of physiological range of insulin, glucose, and fatty acids (F2+) influenced LEPR downstream pathway activation such as JAK2 and AMPK suggesting a leptin-dependent role in fatty acid uptake and oxidation in WT-iPSC-CMs. On the contrary, leptin did not affect JAK2 and AMPK activation in LEPRΔ/Δ-iPSC-CMs. Culturing of (WT)-iPSC-CMs in F2+ medium demonstrated no significant difference in mitochondrial oxygen consumption, while slightly lower glycolysis and glycolytic capacity was observed. However, a leptin effect on fatty acid and glucose metabolism was observed in LEPR∆/∆-iPSC-CMs, which is independent from LEPR downstream regulation. To study the effect of high leptin levels, a medium mimicking some of the diabetic hallmarks, such as high glucose, high insulin, and high leptin levels, was used. Metabolic flexibility was observed in WT-iPSC-CMs in F3+ medium as showed by no difference in mitochondrial function in WT-iPSC-CMs in the presence or absence of high leptin. In contrast, LEPRΔ/Δ-iPSC-CMs in F3+ medium demostrated higher OCR compared to F2 medium, which is accompanied by lower glycolysis and glycolytic capacity, indicating the incapability of LEPRΔ/Δ-iPSC-CMs to use glucose as energy source, as measured by Seahorse analysis. Conclusion and outlook: Taken together, this study demonstrates the importance of leptin and LEPR at the late stage of CM maturation and the fundamental role of metabolic medium condition including physiological range of glucose and fatty acid to study the role of leptin in iPSC-CMs. In addition, LEPRΔ/Δ-iPSC-CMs in diabetic condition (F3+) represent a suitable model to investigate leptin-dependent cardiac metabolism, resulting in increased mitochondrial oxygen consumption and decreased glycolytic function, resembling the condition known in obesity-related T2DM patients. Further studies should focus on the regulation of the metabolic switch between glucose and fatty acid utilization in the absence of a functional LEPR. Understanding the contribution of leptin/LEPR signalling in human CM metabolism will shed light on novel therapeutic approaches to treat diabetic cardiomyopathy.
|
Page generated in 0.0584 seconds