Spelling suggestions: "subject:"diacylglycerol acyltransferase"" "subject:"riacylglycerol acyltransferase""
1 |
Regulation of acyl-CoA:diacylglycerol acyltransferase-1 by protein phosphorylationHan, Jiayi 15 June 2011
Triacylglycerols are the predominant molecules of energy storage in eukaryotes. Triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Although the use of molecular tools, including targeted disruption of either DGAT enzyme, has shed light on their metabolic functions, little is known about the mechanisms responsible for regulating DGAT activity. Several lines of evidence from previous studies have suggested that DGAT1, but not DGAT2, is subject to regulation by phosphorylation and that protein kinase A (PKA)-dependent pathways are likely involved. In this study, the role of PKA in regulating DGAT activity and triacylglycerol synthesis during lipolysis was investigated. By using 3T3-L1 adipocytes, in vitro DGAT activity was shown to increase 2 fold during lipolysis. This data suggests that PKA might phosphorylate and activate DGAT1 during lipolysis to promote the recycling/re-esterification of excessive free fatty acids into triacylglycerols before they reach toxic levels within the cell. Additionally, high-performance liquid chromatography electrospray ionization mass spectrometry/mass spectrometry was exploited to identify PKA phosphorylation sites of DGAT1, and serine-17, -20 and -25 were identified as potential PKA phosphorylation sites using this methodology. The functional importance of these three potential phosphorylation sites was examined. Mutations of these sites to alanines (to prevent phosphorylation) or aspartates (to mimic phosphorylation) gave rise to enzymes functioning similarly to wild-type DGAT1. These phosphorylation sites appeared to be functionally silent as they were not involved in regulating DGAT1 activity, multimer formation, or enzyme stability. However, PKA phosphorylation at these three sites seemed to play a role in affinity of DGAT1 for its diacylglycerol substrate. These results indicate the existence of other unidentified, functionally active PKA phosphorylation sites or phosphorylation sites of other kinases, which are involved in regulating DGAT1.
|
2 |
Regulation of acyl-CoA:diacylglycerol acyltransferase-1 by protein phosphorylationHan, Jiayi 15 June 2011 (has links)
Triacylglycerols are the predominant molecules of energy storage in eukaryotes. Triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Although the use of molecular tools, including targeted disruption of either DGAT enzyme, has shed light on their metabolic functions, little is known about the mechanisms responsible for regulating DGAT activity. Several lines of evidence from previous studies have suggested that DGAT1, but not DGAT2, is subject to regulation by phosphorylation and that protein kinase A (PKA)-dependent pathways are likely involved. In this study, the role of PKA in regulating DGAT activity and triacylglycerol synthesis during lipolysis was investigated. By using 3T3-L1 adipocytes, in vitro DGAT activity was shown to increase 2 fold during lipolysis. This data suggests that PKA might phosphorylate and activate DGAT1 during lipolysis to promote the recycling/re-esterification of excessive free fatty acids into triacylglycerols before they reach toxic levels within the cell. Additionally, high-performance liquid chromatography electrospray ionization mass spectrometry/mass spectrometry was exploited to identify PKA phosphorylation sites of DGAT1, and serine-17, -20 and -25 were identified as potential PKA phosphorylation sites using this methodology. The functional importance of these three potential phosphorylation sites was examined. Mutations of these sites to alanines (to prevent phosphorylation) or aspartates (to mimic phosphorylation) gave rise to enzymes functioning similarly to wild-type DGAT1. These phosphorylation sites appeared to be functionally silent as they were not involved in regulating DGAT1 activity, multimer formation, or enzyme stability. However, PKA phosphorylation at these three sites seemed to play a role in affinity of DGAT1 for its diacylglycerol substrate. These results indicate the existence of other unidentified, functionally active PKA phosphorylation sites or phosphorylation sites of other kinases, which are involved in regulating DGAT1.
|
3 |
Frontiers in the lipid biology of human skin : the role of DGAT1 in skin function and homeostasisHinde, Eleanor January 2016 (has links)
The skin of mammals contains sebaceous glands (SGs) which are attached to the hair follicle (HF), and their best known function is to release sebum onto the skin surface via the HF canal. It has long been known that these two entities of the pilosebaceous unit are interconnected, but the extent to which the two ‘control’ one another was less clear. The current project set out to investigate the impact of the HF cycle on the SG. It was found that in a depilation- induced HF cycle, SG morphology altered drastically, with an increase in SG area (P<0.001), number of sebocytes (P<0.001), and individual sebocyte area (P<0.001) occurring after HF depilation. In SGs attached to a spontaneously cycling HF, none of the above was observed, indicating that spontaneous HF cycling does not affect SG morphology, whereas anagen induction by depilation is associated with altered SG morphology, likely as a result of HF trauma. Diacylglycerol acyltransferase 1 (DGAT1) is an enzyme known for its role in the production of various lipids. It was previously shown that DGAT1 knockout in mice caused SG atrophy, which was thought to be caused by an increased level of retinoic acid within the skin, which in turn caused atrophy of the gland. The current project aimed to further investigate the role of the DGAT1 enzyme in murine skin. Based on the results of the previous experiments, HF and SG morphology of spontaneously-cycling DGAT1 knockout mice were assessed. It was found that DGAT1 knockout caused delayed HF morphogenesis, altered HF cycling, increased HF length (P<0.001), more acute HF growth angle (P<0.001), increased SG apoptosis(P<0.001), decreased SG lipid content (P<0.001) and dysfunctional lipid droplet formation. The impact of DGAT1 knockout on HF morphology and cycling suggests that DGAT1 knockout causes alterations in the WNT/ beta-catenin signalling pathway, as these processes are highly controlled by this signalling pathway. In order to investigate the role of the DGAT1 enzyme in human HFs, and to investigate the hypothesis that DGAT1 may directly interact with the WNT/ beta-catenin signalling pathway, HFs were organ-cultured in the presence of a pharmacological DGAT1 inhibitor (AZD7687). It was found, at the transcriptional level, that one of the major canonical pathways affected by DGAT1 inhibition in human HFs was the WNT/ beta-catenin signalling pathway. DGAT1 inhibition was found to cause suppression of the WNT/beta-catenin signalling pathway via a down-regulation of a number of WNT/beta-catenin related genes. Overall, these results show that SG morphology is largely dependent upon HF homeostasis, and suggest that the DGAT1 enzyme may possess a previously unknown role, directly impacting the WNT/ beta-catenin signalling pathway.
|
4 |
Avocado Diacylglycerol Acyltransferase 1 Is a Key Enzyme to Generate Healthy OilsRahman, Md Mahbubar, Shockey, Jay, Kilaru, Aruna 11 April 2017 (has links)
The avocado mesocarp contains up to 60-70% oil by dry weight where triacylglycerol (TAG) is the major constituent. This neutral lipid, TAG is utilized by plants for the carbon and energy source when stores in seed tissue. There is significant human nutritional demand for vegetable oil, but its use in production of renewable biomaterials and fuels has intensified the need to increase oil production. In plants, the final and committed step in TAG biosynthesis is catalyzed by diacylglycerol acyltransferases (DGAT) and/or a phospholipid: diacylglycerol acyltransferases (PDAT). Both DGAT and PDAT contribute to seed TAG biosynthesis in an independent or overlapping manner, depending on the species. However, the regulation of TAG biosynthesis is not wellstudied in nonseed tissues such as mesocarp of avocado. Based on the transcriptome data of Persea americana it is hypothesized that both DGAT and PDAT are likely to catalyze the conversion of diacylglycerol to TAG. In this study, putative DGAT1 was identified and comprehensive in silico analyses were conducted to determine the respective start codons, full-length coding sequences, transmembrane domains, predicted protein structures and phylogenetic relationships with other known DGAT1s. These data reveal that the putative DGATs of a basal angiosperm species retain features that are conserved not only among angiosperms but also other eukaryotes. For further functional analysis, the avocado DGAT1 was expressed in H1246, a TAG-deficient yeast strain and lipotoxicity rescue assays, TLC analysis, Nile Red staining were conducted. The complementation of this yeast strain confirmed enzyme activity and supported the possible role of avocado DGAT1 in TAG biosynthesis. Finally, substrate specificity of DGAT was determined by incubating microsomes with different radiolabeled substances and found that avocado DGAT1 has a preference toward oleic acid (18:1) compare to palmitic acid (16:0) while it is converting diacylglycerol (DAG) to triacylglycerol. All these data suggested that avocado DGAT1 is functional and making TAG with high preference of oleic acid over palmitic acid.
|
5 |
Characterization of Acyltransferases and WRINKLED Orthologs Involved in TAG Biosynthesis in AvocadoRahman, Md Mahbubur 01 December 2018 (has links)
Triacylglycerols (TAG) or storage oils in plants are utilized by humans for nutrition, production of biomaterials and fuels. Since nonseed tissues comprise the bulk biomass, it is pertinent to understand how to improve their TAG content. Typically, the final step in TAG biosynthesis is catalyzed by diacylglycerol (DAG) acyltransferases (DGAT) and/or phospholipid: diacylglycerol acyltransferases (PDAT), which also determine the content and composition of TAG. Besides enzymatic regulation of TAG synthesis, transcription factors such as WRINKLED1 (WRI1) play a critical role during fatty acid synthesis. In this study, mesocarp of Persea americana, with > 60% TAG by dry weight and oleic acid as the major constituent was used as a model system to explore TAG synthesis in nonseed tissues. Based on the transcriptome data of avocado, it was hypothesized that both DGAT and PDAT are likely to catalyze the conversion of DAG to TAG, and orthologs of WRI1 transcription factors regulate fatty acid biosynthesis. Here, with comprehensive in silico analyses, putative PamDGAT1 and 2 (Pam; Persea americana), PamPDAT1, and PamWRI1 and 2 were identified. When acyltransferases were expressed into TAG-deficient mutant yeast strain (H1246), only DGAT1 restored TAG synthesis capacity, with a preference for oleic acid. However, in planta, when transiently expressed in Nicotiana benthamiana leaves, PamDGAT1, PamPDAT1, PamWRI1, and PamWRI2 increased lipid contents, PamDGAT2 remained inactive. The data reveals that putative PamDGAT1, PamPDAT1 are functional and preferred acyltransferases in avocado and both PamWRI1 and 2 regulate fatty acid synthesis. In conclusion, while nonseed tissue of a basal angiosperm has certain distinct regulatory features, DAG to TAG conversion remains highly conserved.
|
6 |
INCREASING RENEWABLE OIL CONTENT AND UTILITYSerson, William Richard 01 January 2017 (has links)
Since the dawn of agriculture man has been genetically modifying crop plants to increase yield, quality and utility. In addition to selective breeding and hybridization we can utilize mutant populations and biotechnology to have greater control over crop plant modification than ever before. Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a highly active acyl-CoA: diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Furthermore, we have screened a soybean fast neutrino population derived from M92-220 variety and found three high oil mutants that do not have reduced levels of protein. From the F2 plant populations we quantitatively pooled the high oil and low oil plants and performed comparative genomics hybridization (CGH). From the data it appears that two families have a 0.3 kb aberration in chromosome 14. We are performing further analysis to study this aberration and develop markers for molecular breeding. Mutagenic techniques are also useful for developing other traits such as early flowering varieties and adapting new high oil crops to a new region. Chia (Salvia hispanica) is an ancient crop that has experienced an agricultural resurgence in recent decades due to the high omega 3 fatty acid (ω-3) content of the seeds and good production potential. The area of cultivation has been expanded to Kentucky using mutagenized populations and the composition traits are similar to that of the original regions of cultivation in Central and South America.
|
7 |
IMPACT OF A HIGH OIL AND PROTEIN ON AGRONOMIC TRAITS AND OVERALL SEED COMPOSITION IN SOYBEANAL-Amery, Maythem 01 January 2017 (has links)
New soybean lines have been developed with significantly higher oil, protein + oil and higher meal protein. These soybeans contain a VgD1 gene (highly active acyl-CoA:diacylglycerol acyltransferase, DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in soybean. Soybean with active DGAT from Vernonia galamensis (VgDGAT1A) has active TAG biosynthesis relative to other DGATs including from soybeans and Arabidopsis. DGATs catalyze the final step of TAG synthesis: DAG (diacylglycerol) + acyl-CoA → TAG + CoASH (Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle). A thorough analysis of the major components in VgD1 lines, especially those of nutritional or anti-nutritional value including what else changed (decreased); and what remained at normal levels was conducted. A field study was conducted in Spindletop and Princeton KY, reviled no reduction in yield nor protein, and about 4 % (DW) more oil was obtained in Princeton and 2% (DW) in Spindeltop. No consistent reduction in the other seed composition.VgDGAT1A soybean lines indicated noticeably early maturation compared to the parental line. This is associated with higher expression of the flowering genes FT2 (FLOWERING LOCUS T2) and FT5 (FLOWERING LOCUS T5), for the high oil lines. A single recessive mutation in soybean (MIPS) myo-inositol 1-phosphate synthase, confers a seed phenotype of increase inorganic phosphate (Pi) crossed with high oil lines expressing a DGAT from Vernonia galamensis (VgDGAT1A) (VgD). The oil and protein were maintained compart to VgD. VgD X MIPS (VM), had 21.2, and 22 % oil in 2015, and 23.3 and 24.0 oil in 2016, and protein 46, 49 in 2015, and 37 and 39 % in 2016. Phosphate results suggesting the cross MV is still segregating for MIPS and more selection and planting are needed.
Measurement of seed phosphate levels is an established technique for screening for low phytate mutants but to date, it has not been performed non-destructively from single soybean seeds. A protocol was developed greatly reducing the sample size thereby reducing the cost and time and saving a generation in the selection of low phytate mutant seeds based on the high Pi phenotype.
Genotyping single seeds are useful in breeding and genetics while maintaining high germination rates. Nondestructive single-seed genomic DNA extraction protocols using 12 mg cotyledon tissue with a modified cetyl trimethyl ammonium bromide (CTAB) technique and a commercial seed DNA extraction kit using 1 mg cotyledon tissue were developed for dry soybean seeds and cross-verified with leaf DNA analysis.
|
8 |
Identification of Acyltransferases Associated with Triacylglycerol Biosynthesis in AvocadoSung, Ha-Jung 01 December 2013 (has links) (PDF)
A variety of plants synthesize and store oil in the form of triacylglycerols (TAG) in their seed and nonseed tissues that are commonly used as vegetable oils. In seed tissues, an acyl CoA-dependent diacylglycerol (DAG) acyltransferase (DGAT) and/or -independent phospholipid:DGAT (PDAT) catalyze the conversion of DAG to TAG. In avocado fruit, which stores up to 70% oil by dry weight in mesocarp, it is hypothesized that both DGAT and PDAT are likely involved in TAG synthesis. To investigate, TAG content and composition and transcript levels for the acyltransferases in avocado fruit were quantified by gas chromatography and real-time polymerase chain reaction, respectively. Temporal, tissue-specific and phenotypic comparisons revealed that while DGAT1 gene expression was specifically associated with TAG accumulation, PDAT also correlated with higher levels of polyunsaturated fatty acid; DGAT2 was barely detectable. These studies suggest that TAG biosynthesis in nonseed tissues of avocado involves acyl CoA-dependent and -independent reactions.
|
9 |
Evaluation of Genes Encoding the Enzymes of the Kennedy Pathway in Soybeans with Altered Fatty Acid ProfilesMcNaughton, Amy J. M. 28 June 2012 (has links)
Soybean (Glycine max (L.) Merr) is the largest oil and protein crop in the world and it is grown for both oil and protein. To address the needs of both the edible oil market and industrial applications of soybean oil, fatty acid modification has been a focus of soybean breeding programs. Natural variation, mutagenesis and genetic engineering have been used to alter the fatty acid profile. Several genes, mostly desaturases, have been associated with altered fatty acid profiles but enzymes in the Kennedy Pathway have yet to be studied as another source of genetic variation for altering the fatty acid profiles. The Kennedy Pathway is also known as the oil producing pathway and consists of four enzymes: glycerol-3-phosphate acyltransferase (G3PAT); lysophosphatidic acid acyltransferase (LPAAT); phosphatidic acid phosphatase (PAP); and diacylglycerol acyltransferase 1 (DGAT1). The starting material for this pathway is glycerol-3-phosphate, which is produced from glycerol by glycerol kinase (GK), and the product of this pathway is triacylglycerol (TAG). The overall objective of this study was to elucidate the role that the Kennedy Pathway plays in determining the fatty acid profile in two ways: (1) sequencing the transcribed region of the genomic genes encoding the enzymes of GK, G3PAT, LPAAT, and DGAT1 in soybean genotypes with altered fatty acid profiles; and (2) studying their expression over seed development, across three growing temperatures. The genetic material for the study consisted of four soybean genotypes with altered fatty acid profile: RG2, RG7, RG10, and SV64-53. Results from sequencing showed that the mutations identified in G3PAT, LPAAT, and DGAT1 in the four soybean genotypes did not explain the differences in the fatty acid profiles. The expression of G3PAT, LPAAT, and DGAT1 over seed development showed that G3PAT had the lowest levels, followed by LPAAT, then DGAT1, across the growing temperatures. The differences in expression among genotypes corresponded to differences in fatty acid accumulation, suggesting that expression rather than genetic mutations in the transcribed region of the genes influenced the fatty acid profile of the genotypes in this study. In conclusion, the enzymes of the Kennedy Pathway appear to contribute to the altered fatty acid profiles observed in the soybean mutant genotypes. / Ontario Ministry of Economic Development and Innovation (formerly Ontario Ministry of Research and Innovation), BioCar Initiative, Grain Farmers of Ontario, SeCan
|
10 |
Biochimie fonctionnelle des diacylglycérol acyltransférases ; apports à la biologie de synthèse des huiles / Functional study of diacylglycerol acyltransferases; toward oil synthetic biologyAymé, Laure 20 October 2016 (has links)
Les triglycérides (TG) représentent une réserve énergétique essentielle à de nombreuses cellules. De compositions très variées, ils sont le principal constituant de l’huile destinée à l’alimentation, ou utilisée pour produire différents composés d’intérêt industriel. Les Acyl-CoA : diacylglycérol acyltransférases (DGAT) catalysent l’étape finale et limitante de leur synthèse en incorporant un acide gras sur un diglycéride. Chez les végétaux, il existe trois familles, DGAT1, DGAT2 et DGAT3, ne partageant aucune homologie et pour lesquelles aucune structure n’est connue. Ceci empêche toute amélioration de la qualité des huiles par une approche rationnelle. La contribution des DGAT1 à l’accumulation d’huiles alimentaires a été démontrée. Chez certains végétaux, les DGAT2 ont un rôle prépondérant dans lasynthèse de TG peu communs tels que ceux hydroxylés du ricin permettant de produire des lubrifiants et des bioplastiques. La contribution des DGAT3 à la synthèse des TG reste à déterminer in planta.Nous avons étudié les trois familles de DGAT de la plante modèle Arabidopsis thaliana, appartenant à la famille du colza, ainsi qu’une DGAT1 du palmier à huile, plante de culture industrielle. L’expression en bactéries, en levure modèle ou oléagineuse ainsi que l’étude de lignées de plantes mutantes ont permis de caractériser finement les activités de ces enzymes. La modulation de la composition et du contenu en TG des levures par les DGAT a également démontré l’intérêt de ces enzymes pour la production d’huiles microbiennes à façon. / Triacylglycerols (TAG) are an essential energy storage in many cells. Their composition is diverse; they are the main component of the seed oil for the food industry or used to produce industrial compounds. Acyl-CoA: diacylglycerol acyltransferase (DGAT) catalyze the final and rate-limiting step of TAG synthesis by transferring a fatty acid onto a diacylglycerol. In plants, there are three families, DGAT1, DGAT2 and DGAT3, sharing no homology and of unknown structure. It prevents any improvement of seed oil yield and quality by a rational approach. DGAT1 involvement in edible oil accumulation was demonstrated. In some plants, DGAT2 plays a key role in the synthesis of unusual TAG such as hydroxylated TAG found in castor oil and used to produce lubricants and bioplastics. DGAT3 contribution to TAG biosynthesis has not been demonstrated in planta. We studied three families of DGAT from the model plant Arabidopsis thaliana, belonging to the same family as oilseed rape, and a DGAT1 from oil palm, an industrial crop. DGAT expression in bacteria, yeasts and the study of mutant plant lines allowed us to characterize their activities. The modulation of yeast TAG content and composition induced by DGAT expression demonstrated the value of these enzymes for the production of tailored microbial oils.
|
Page generated in 0.0725 seconds