• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude des rôles des diacylglycérol kinases chez Arabidopsis thaliana par des approches pharmacologiques et par génétique inverse. / Roles of diacylglycerol kinases in Arabidopsis thaliana by pharmacological approaches and reverse genetics

Djafi, Nabila 23 January 2014 (has links)
Les diacylglycerol kinases catalysent la phosphorylation du diacylglycérol en acide phosphatidique. Nous avons montré que la PLC spécifique des phosphoinositide (PI-PLC) et la diacylglycérol kinase (DGK) régulent négativement l'expression basale de la plupart des gènes DREB2 dans les cellules en suspension d'Arabidopsis thaliana. Les gènes DREB2 codent pour des facteurs de transcription qui se lient aux motifs DRE (Drought Responsive Elements). Ces éléments sont également liés par les facteurs DREB1. Alors que les facteurs DREB2 sont principalement impliqués dans les réponses à la sécheresse et au stress chaud, les DREB1 sont quant à eux induits en réponse au froid. Nous avons également pu montrer que l'inhibition par des agents pharmacologiques des activités PI-PLC ou DGK conduit à l'induction de l'expression basale des gènes DREB1. Cependant, l'induction est beaucoup moins marquée chez les gènes DREB1 que DREB2A, un membre de la famille DREB2. Cela indique que les gènes DREB1 et DREB2, ne sont pas soumis à la même régulation transcriptionnelle et que la signalisation lipidique pourrait en partie expliquer les différences dans la régulation des gènes DREB. Les DGK d'Arabidopsis sont codées par une famille multigénique de 7 gènes. Parmi ces gènes, on retrouve la DGK5 dont les le transcrit peut subir un épissage alternatif, ce qui aboutit à deux transcrits, dont l'un comporte une protéine avec un domaine putatif de liaison à la calmoduline. Le mutant knock-out dgk5.1 à une racine plus courte lorsqu'il est cultivé à 12°C comparé au sauvage. Ce phénotype racinaire est corrélé avec une zone méristématique et des cellules plus petites. La croissance des racines du mutant n'est n'est pas modifiée en présence de la plupart des hormones testées. Pourtant, elle est moins sensible à l'auxine exogène à 12°C par rapport au WT. Le mutant dgk5.1 génère moins de racines secondaires en présence d'auxine exogène que le WT. Le promoteur DR5 n'est pas activé dans le mutant à 12°C par l'IAA exogène dans la zone méristématique, alors qu'il est dans le WT. Nos résultats montrent que le mutant dgk5.1 est altéré dans sa réponse à l'auxine à 12°C, suggérant un rôle de perception/transduction de l’auxine dans les racines courtes. / Diacylglycerol kinases catalyse the phosphorylation of diacylglycerol into phosphatidic acid. We show that phosphoinositide dependent-phospholipase C (PI-PLC) and diacylglycerol kinase (DGK) in Arabidopsis thaliana suspension cells negatively regulated the basal expression of most DREB2 genes. DREB2 genes encode transcription factors that bind to Drought Responsive Elements (DRE). Those elements are also bound by DREB1 factors. While DREB2 factors are mostly involved in drought and heat responses, DREB1s are induced in the response to chilling. We show also that the pharmacological inhibition of PI-PLC or DGK leads to the basal induction of DREB1 genes. However, the induction is much less marked for the DREB1 genes than that of DREB2A, a member of the DREB2 family. This illustrates that DREB1 and DREB2 genes, while having the same targets, are not submitted to the same transcription regulation, and that lipid signalling might in part explain these differences in the regulation of the DREB genes. In Arabidopsis, DGKs are encoded by a multigenic family of 7 members. In this thesis, we focus on DGK5. The transcripts can have differential splicing, leading to two mature transcript, one of which leading to a protein with a putative calmodulin binding domain. A dgk5 knocked-out mutant is comparable to the WT, except for shorter root when grown at 12°C. This short root phenotype is correlated with to shorter meristematic zone and smaller cells. The short root phenotype is not altered in presence of most hormones. Yet, the root growth is less sensitive to exogenous auxin at 12°C compared to the WT. Accordingly the mutant produces less secondary roots in presence of exogenous IAA than the WT at 12°C. The DR5 promoter is not activated in the mutant at 12°C by exogenous IAA, in the meristematic zone, while it is in the WT. Our results show that the dgk5.1 mutant is impaired in auxin response at 12°C, suggesting a role of auxin perception /transduction in the short root phenotype.
12

Therapeutic targeting of DGKA-mediated macropinocytosis in lymphangioleiomyomatosis

Kovalenko, Andrii 07 June 2020 (has links)
BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease characterized by cystic destruction of the lung. It occurs in 80% of people with Tuberous Sclerosis Complex disorder (TSC), a multisystem, autosomal dominant disorder caused by mutations in tumor suppressor genes TSC1 and TSC2. Spontaneous biallelic mutations in these genes can give rise to sporadic LAM. Mammalian target of rapamycin complex I (mTORC1), a master regulator of cellular anabolic metabolism is hyperactivated in LAM cells. Upregulation of protein synthesis and downregulation of autophagy creates a state of starvation stress that upregulates pathways of extracellular nutrient acquisition. Macropinocytosis, a form of clathrin-independent endocytosis, is upregulated in TSC2-deficient cells. We performed a high-throughput compound screen utilizing a repurposing drug library. We identified that ritanserin, a diacylglycerol kinase alpha (DGKA) inhibitor, synergizes with Chloroquine (CQ) to selectively inhibit proliferation of TSC2-deficient mouse embryonic fibroblasts (MEFs) compared to TSC2+/+ MEFs. OBJECTIVE: We hypothesized that TSC2-deficient cells rely on macropinocytosis to support their growth during the periods of stress and starvation and that ritanserin synergizes with CQ to inhibit proliferation in TSC2-deficient cells by inhibiting macropinocytosis. METHODS: Crystal violet-based proliferation assays were used to monitor the effect of pharmacological and genetic inhibition of DGKA on cell proliferation. Immunoblotting was used to measure the expression levels of TSC2, tS6R, pS6R, Cleaved PARP, Cleaved Caspase 3 and Actin. siRNA induced Htr2a knockdown and shRNA induced DGKA knockdown cell culture models were used to define the dual functions of ritanserin and observe their effects on macropinocytosis and cell proliferation. LC/MS was used to measure cell lipid content and how it changes in response to ritanserin. Fluorophore-labeled BSA and 70-kDa Dextran were used to measure macropinocytosis. Lysotracker was used to measure the number of lysosomes, while DQ-BSA was used to measure lysosomal functionality. RESULTS: TSC2-deficient cells express higher levels and show upregulated activity of DGKA. Genetic and pharmacologic inhibition of DGKA prevents TSC2-deficient cells from acquiring nutrients via macropinocytosis. Phospholipid metabolism is altered in TSC2-deficient cells, marked by the accumulation of phosphatidic acid and ceramides. Treatment with ritanserin leads to the accumulation of diacylglycerol and phospholipids, as well as a reduction in phosphatidic acid. CONCLUSIONS: TSC2-deficient cells rely on macropinocytosis to meet their metabolic needs. Diacylglycerol kinase alpha (DGKA) is required for macropinocytic nutrient uptake. Pharmacologic or genetic inhibition of DGKA creates metabolic stress in TSC2-deficient cells, which ultimately leads to increased apoptotic response to treatment with CQ. This project identifies a novel connection between mTOR signaling, lysosome metabolism and macropinocytosis, and a vulnerability that allows the selective targeting of LAM cells. / 2021-06-07T00:00:00Z
13

A Member Of The Novel Fikk Family Of Plasmodium Falciparum Putative Protein Kinases Exhibits Diacylglycerol Kinase Activity And Is Exported To The Host Erythrocyte

Curtis, David Floyd 01 January 2007 (has links)
Plasmodium falciparum is one of four species known to cause malaria in humans and is the species that is associated with the most virulent form of the disease. Malaria causes nearly two million deaths each year, many of these occurring among children in under-developed countries of the world. One reason for this is the prevalence of drug resistant strains of malaria that mitigate the efficacy of existing drugs. Hence, the identification of a new generation of pharmacological agents for malaria is extremely urgent. The recent identification of a group of novel protein kinases within the Plasmodium falciparum genome has provided researchers with a basis for what many hope to be new potential drug targets for malaria. Identified within the Plasmodium genome and a few select apicomplexans, these novel proteins have been predicted to be protein kinases based solely on certain sequence features shared with other eukaryotic protein kinases (ePKs). However, to date, no significant studies to determine the function of these novel kinases have been performed. Termed FIKKs, these proteins all possess a non-conserved N-terminal sequence that contains a Plasmodium export element (Pexel) which may target the proteins for export from the parasite and a conserved C-terminal catalytic domain containing a FIKK sequence common to all twenty members of this family. We analyzed the localization of one of the FIKK proteins, FIKK11, encoded by the PF11_0510 locus, during intraerythrocyte differentiation of P. falciparum by Western blot analysis and indirect immunofluorescence assay. Western blot analysis demonstrated that FIKK 11 is expressed within the parasite at all stages of its erythrocytic life cycle with its highest expression occurring during the schizont stage. Immunofluorescence assays showed that this protein is exported from the Plasmodium parasite into the host erythrocyte cytosol which is consistent with studies on other Plasmodium proteins that also have the Pexel motif. To determine the enzymatic activity of FIKK11, we overexpressed the recombinant protein in E. coli and then purified it. However, no protein kinase activity was detected using several commonly used protein kinase substrates including histone H1, myelin basic protein, or dephosphorylated casein. We also did not detect any kinase activity of the native enzyme using pull-down assays of the Plasmodium falciparum cell extract against those same substrates. In addition, kinase substrate peptide array analysis of FIKK11 showed no evidence of protein kinase activity either for FIKK11. Interestingly, however, we were able to detect some kinase activity using the recombinant protein alone with no substrate. The lack of the glycine triad within subdomain I of these FIKK kinases as compared with most traditional eukaryotic protein kinases may explain why we were unable to find any interactions between FIKK11 and other commonly protein kinase substrates. Of interest was the observation that the protein reproducibly exhibited what appeared to be an autophosphorylation activity when using the standard protein kinase assay. Further analyses, however, showed that FIKK11 actually possesses diacylglycerol kinase activity utilizing 1-Stearoyl-2-arachidonoyl-sn-glycerol as a substrate. This is the first evidence of diacylglycerol kinase activity in Plasmodium falciparum. Because FIKK11 is exported into the host cell and is localized on the erythrocyte membrane, its enzymatic activity may potentially have relevance in the pathophysiology of the disease.
14

EXAMINATION OF ENZYMATIC ACTIVITY AND SUBSTRATE SPECIFICITY IN ENZYMES INVOLVED IN THE PHOSPHATIDYLINOSITOL CYCLE

D'Souza, Kenneth 31 March 2015 (has links)
<p>Phosphatidylinositol (PI) is a phospholipid that constitutes only a minor component of eukaryotic membranes. However, they are critical in many fundamental cellular processes, such as signal transduction pathways, vesicular trafficking and actin cytoskeletal dynamics. PI is highly enriched in specific acyl chains at both the <em>sn-1</em> and <em>sn-2</em> positions, the major species being 1-stearoyl-2-arachidonoyl. Enzymes required for PI synthesis are believed to play a major role in this enrichment through the selective catalysis of specific substrates. We have studied several aspects of two enzymes involved in PI synthesis, Diacylglycerol kinase ε (DGKε) and CDP-Diacylglycerol synthases (CDS). We have studied the role of the ATP-binding motif of DGKε and showed that this enzyme is not only required for enzymatic activity, but substrate specificity and sub-cellular localization. We have also looked at the region adjacent to the catalytic site, containing a cholesterol recognition motif, and determined that this also affects the enzymes activity and substrate specificity. Finally, we have characterized the enzymatic properties of two CDS isoforms <em>in vitro</em> and demonstrated that these isoforms exhibit different substrate specificities. Taken together, our results serve to further our understanding of both DGKε and CDS1/2 and their roles in PI synthesis and enrichment with specific acyl chains.</p> / Master of Science (MSc)

Page generated in 0.0596 seconds