Spelling suggestions: "subject:"diagnostic industriel"" "subject:"hiagnostic industriel""
1 |
Sélection et extraction d'attributs pour les problèmes de classification / Feature selection and extraction for classification problemsEl Ferchichi, Sabra 01 July 2013 (has links)
Les progrès scientifiques réalisés ces dernières années ont produit des bases de données de plus en plus grandes et complexes. Ceci amène certains classificateurs à générer des règles de classification basées sur des attributs non pertinents, et dégrader ainsi la qualité de classification et la capacité de généralisation. Dans ce contexte, nous proposons une nouvelle méthode pour l’extraction d’attributs afin d’améliorer la qualité de la classification. Notre méthode consiste à effectuer une classification non supervisée des attributs afin de retrouver les groupements d’attributs similaires. Une nouvelle mesure de similarité à base d’analyse de tendance est alors conçue afin de retrouver les attributs similaires dans leur comportement. En effet, notre méthode cherche à réduire l’information redondante tout en identifiant les tendances similaires dans les vecteurs attributs tout au long de la base de données. Suite à la formation des clusters, une transformation linéaire sera appliquée sur les attributs dans chaque groupement pour obtenir un représentant unique. Afin de retrouver un centre optimal, nous proposons de maximiser l’Information Mutuelle (IM) comme mesure de dépendance entre les groupements d’attributs et leur centre recherché. Des expériences réalisées sur des bases de données réelles et artificielles montrent que notre méthode atteint de bonnes performances de classification en comparaison avec d’autres méthodes d’extraction d’attributs. Notre méthode a été également appliquée sur le diagnostic industriel d’un procédé chimique complexe Tennessee Eastman Process (TEP). / Scientific advances in recent years have produced databases increasingly large and complex. This brings some classifiers to generate classification rules based on irrelevant features, and thus degrade the quality of classification and generalization ability. In this context, we propose a new method for extracting features to improve the quality of classification. Our method performs a clustering of features to find groups of similar features. A new similarity measure based on trend analysis is then designed to find similarity between features in their behavior. Indeed, our method aims to reduce redundant information while identifying similar trends in features vectors throughout the database. Following the construction of clusters, a linear transformation is applied on each group to obtain a single representative. To find an optimal center, we propose to maximize the Mutual Information (IM) as a measure of dependency between groups of features and the desired center. Experiments on real and synthetic data show that our method achieved good classification performance in comparison with other methods of extracting features. Our method has also been applied to the industrial diagnosis of a complex chemical process Tennessee Eastman Process (TEP).
|
2 |
Remémoration guidée par l'adaptation et maintenance des systèmes de diagnostic industriel par l'approche du raisonnement à partir de cas.Haouchine, Mohamed Karim 23 September 2009 (has links) (PDF)
Le développement des nouvelles technologies des différents produits et composants a rendu la nature des systèmes de plus en plus complexe. Cette complexité s'est répercutée sur le bon fonctionnement des équipements avec l'apparition de nouvelles pannes et l'accroissement des coûts engendrés. La maintenance est devenue un élément indispensable pour le maintien en condition opérationnelle de tout équipement quelque soit sa nature. Dans ce contexte nous nous intéressons à la maintenance corrective et plus particulièrement au diagnostic de pannes des équipements industriels. Nous développons une méthode basée sur le raisonnement à partir de cas (RàPC), méthode largement employée dans le domaine du diagnostic industriel. Le RàPC est une approche de résolution de problèmes et d'apprentissage. En diagnostic, une large variété de systèmes de RàPC a fait ses preuves, systèmes allant de problèmes de classification (systèmes orientés extraction « case-base mining ») aux systèmes à base de connaissance (systèmes orientés « connaissance »). Nous avons déployé dans le premier type de système, où la formalisation du cas est triviale, une méthode de maintenance du système. La maintenance de l'ensemble passe par la maintenance de la base de cas qui représente le coeur de ces systèmes de RàPC. Cette méthode de maintenance est composée d'une étape de structuration associée à une étape d'auto-incrémentation de la base de cas, afin de garantir la qualité du système tout au long de son évolution. Quant au deuxième type de système, nous avons mis en place un système fondé sur des modèles de connaissances associés aux différentes phases de manipulation du cycle de RàPC. Nous avons proposé une méthode de remémoration guidée par l'adaptation prenant appui sur deux mesures, une de similarité et une d'adaptation, et un algorithme d'adaptation spécifique au domaine du diagnostic industriel. Nos propositions ont été implémentées et validées sur une plateforme d'e-maintenance GaMA-Frame (Global asset MAintenance). Cette plateforme intègre notre module de diagnostic par RàPC ainsi que les différents modèles de connaissance liés à l'équipement à diagnostiquer SISTRE (Supervised Industrial System of pallets TRansfEr).
|
Page generated in 0.0881 seconds