• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 5
  • 2
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 14
  • 13
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electromechanical wave imaging for the in vivo characterization and assessment of cardiac arrhythmias

Costet, Alexandre January 2016 (has links)
Cardiac diseases and conduction disorders are associated with stroke, heart failure and sudden cardiac death and are a major health concern worldwide. In the US alone, more than 14 million people suffer from heart rhythm disorders. Current mapping and characterization techniques in the clinic involve invasive procedures, which are time-consuming, costly, and may involve ionizing radiation. In this dissertation, we introduce Electromechanical Wave Imaging (EWI) as a non-invasive, ultrasound-based treatment planning tool for pre-procedure characterization and assessment of arrhythmia in the clinic. In particular, standard EWI processing methods for mapping the electromechanical wave (EW), i.e. the onset of the mechanical activity following the depolarization of the heart, are described and detailed. Next, validation of EWI is performed with 3D electromechanical mapping and the EW propagation is shown to follow the electrical activation in all four chambers of the heart. Demonstration of the value of EWI for the characterization of cardiac arrhythmia is accomplished in vivo in a large animal model. First, EWI is shown capable of localizing the earliest region of activation in the ventricles during pacing from a standard pacemaker lead, as well as during pacing from a novel biological pacemaker. Repeatability is also demonstrated between consecutive cardiac cycle during normal sinus rhythm and during pacing. Then, in the atria, we demonstrate that EWI is capable of accurately identifying focal sources while pacing from several locations in both the left and right atria. In addition to being capable of localizing the focal source, EWI is also shown capable of differentiating between endocardial and epicardial focal sources. Finally, it is shown that EWI can correctly identify regions of infarction and monitor formation of infarcts over several days, after ligation of the left anterior descending coronary artery of canine hearts. Novel processing techniques aimed at extracting quantitative parameters from EWI estimates are then developed and implemented. Details of the implementation of processing methods for estimating the velocity of the EW propagation are presented, and a study of the EW velocity values in a canine heart before and after infarct formation is conducted. Electromechanical cycle length mapping (ECLM), which is aimed at extracting local rates of electromechanical activation in the heart, is then introduced and its implementation detailed. ECLM is subsequently validated in a paced canine heart in vivo. Finally, initial clinical feasibility is demonstrated. First, in the study of treatment of chaotic arrhythmia such as in the case of atrial fibrillation patients undergoing direct current cardioversion, ECLM is shown to be able to confirm acute treatment success. Then, the clinical value of EWI in the electrophysiology lab as a treatment planning tool for the characterization of focal arrhythmia is shown in ventricular tachycardia and Wolff-Parkinson-White patients. EWI is currently only a step away from real-world clinical application. As a non-invasive, ultrasound-based imaging modality, EWI is capable of providing relevant insights into the origins of an arrhythmia and has the potential to position itself in the clinic as a uniquely valuable pre-procedure planning tool for the non-invasive characterization of focal arrhythmias.
32

Time-domain Compressive Beamforming for Medical Ultrasound Imaging

David, Guillaume January 2016 (has links)
Over the past 10 years, Compressive Sensing has gained a lot of visibility from the medical imaging research community. The most compelling feature for the use of Compressive Sensing is its ability to perform perfect reconstructions of under-sampled signals using l1-minimization. Of course, that counter-intuitive feature has a cost. The lacking information is compensated for by a priori knowledge of the signal under certain mathematical conditions. This technology is currently used in some commercial MRI scanners to increase the acquisition rate hence decreasing discomfort for the patient while increasing patient turnover. For echography, the applications could go from fast 3D echocardiography to simplified, cheaper echography systems. Real-time ultrasound imaging scanners have been available for nearly 50 years. During these 50 years of existence, much has changed in their architecture, electronics, and technologies. However one component remains present: the beamformer. From analog beamformers to software beamformers, the technology has evolved and brought much diversity to the world of beam formation. Currently, most commercial scanners use several focalized ultrasonic pulses to probe tissue. The time between two consecutive focalized pulses is not compressible, limiting the frame rate. Indeed, one must wait for a pulse to propagate back and forth from the probe to the deepest point imaged before firing a new pulse. In this work, we propose to outline the development of a novel software beamforming technique that uses Compressive Sensing. Time-domain Compressive Beamforming (t-CBF) uses computational models and regularization to reconstruct de-cluttered ultrasound images. One of the main features of t-CBF is its use of only one transmit wave to insonify the tissue. Single-wave imaging brings high frame rates to the modality, for example allowing a physician to see precisely the movements of the heart walls or valves during a heart cycle. t-CBF takes into account the geometry of the probe as well as its physical parameters to improve resolution and attenuate artifacts commonly seen in single-wave imaging such as side lobes. In this thesis, we define a mathematical framework for the beamforming of ultrasonic data compatible with Compressive Sensing. Then, we investigate its capabilities on simple simulations in terms of resolution and super-resolution. Finally, we adapt t-CBF to real-life ultrasonic data. In particular, we reconstruct 2D cardiac images at a frame rate 100-fold higher than typical values.
33

Statistical and Entropy Considerations for Ultrasound Tissue Characterization

Unknown Date (has links)
Modern cancerous tumor diagnostics is nearly impossible without invasive methods, such as biopsy, that may require involved surgical procedures. In recent years some work has been done to develop alternative non-invasive methods of medical diagnostics. For this purpose, the data obtained from an ultrasound image of the body crosssection, has been analyzed using statistical models, including Rayleigh, Rice, Nakagami, and K statistical distributions. The homodyned-K (H-K) distribution has been found to be a good statistical tool to analyze the envelope and/or the intensity of backscattered signal in ultrasound tissue characterization. However, its use has usually been limited due to the fact that its probability density function (PDF) is not available in closed-form. In this work we present a novel closed-form representation for the H-K distribution. In addition, we propose using the first order approximation of the H-K distribution, the I-K distribution that has a closed-form, for the ultrasound tissue characterization applications. More specifically, we show that some tissue conditions that cause the backscattered signal to have low effective density values, can be successfully modeled by the I-K PDF. We introduce the concept of using H-K PDF-based and I-K PDF-based entropies as additional tools for characterization of ultrasonic breast tissue images. The entropy may be used as a goodness of fit measure that allows to select a better-fitting statistical model for a specific data set. In addition, the values of the entropies as well as the values of the statistical distribution parameters, allow for more accurate classification of tumors. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
34

Performance Analysis and Optimization of 2-D Cardiac Strain Imaging for Clinical Applications

Bunting, Ethan Armel January 2017 (has links)
Heart disease has remained the deadliest disease in the United States for the past 100 years. Imaging methods are frequently employed in cardiology in order to help clinicians diagnose the specific type of heart disease and to guide treatment decisions. Ultrasound is the most frequently used imaging modality in cardiology because it is inexpensive, portable, easy to use, and extremely safe for patients. Using a variety of imaging processing techniques, deformations exhibited by the cardiac tissue during contraction can be imaged with ultrasound and used as an indicator of myocardial health. This dissertation will demonstrate the clinical implementation of two ultrasound-based strain estimation techniques developed in the Ultrasound and Elasticity Imaging Laboratory at Columbia University. Each of the two imaging methods will be tailored for clinical applications using techniques for optimal strain estimation derived from ultrasound and imaging processing theory. The motion estimation rate (MER) used for strain estimation is examined in the context of the theoretical Strain Filter and used to increase the precision of axial strain estimation. Diverging beam sequences are used to achieve full-view high MER imaging within a single heartbeat. At approximately 500 Hz, the expected elastographic signal-to-noise ratio (E(SNRe|ε)) of the axial strain becomes single-peaked, indicating an absence of “peak-hopping” errors which can severely corrupt strain estimation. In order to mediate the tradeoff in spatial resolution resulting from the use of diverging beams, coherent spatial compounding is used to increase the accuracy of the lateral strain estimation, resulting in a more physiologic strain profile. A sequence with 5 coherently compounded diverging waves is used at 500 Hz to improve the radial SNRe of the strain estimation compared to a single-source diverging sequence at 500 Hz. The first technique, Myocardial Elastography (ME), is used in conjunction with an intracardiac echocardiography (ICE) system to image the formation of thermal ablation lesions in vivo using a canine model (n=6). By comparing the systolic strain before and after the formation of a lesion, lesion maps are generated which allow for the visualization of the lesion in real-time during the procedure. A good correlation is found between the lesion maps and the actual lesion volume as measured using gross pathology (r2=0.86). The transmurality of the lesions are also shown to be in good agreement with gross pathology. Finally, the feasibility of imaging gaps between neighboring lesions is established. Lesion size and the presence of gaps have been associated with the success rate of cardiac ablation procedures, demonstrating the value of ME as a potentially useful technique for clinicians to help improve patient outcomes following ablation procedures. The second technique, Electromechanical Wave Imaging (EWI), is implemented using a transthoracic echocardiography system in a study of heart failure patients (n=16) and healthy subjects (n=4). EWI uses the transient inter-frame strains to generate maps of electromechanical activation, which are then used to distinguish heart failure patients from healthy controls (p<.05). EWI was also shown to be capable of distinguishing responders from non-responders to cardiac resynchronization therapy (CRT) on the basis of the activation time of the lateral wall. These results indicate that EWI could be used as an adjunct tool to monitor patient response to CRT, in addition to helping guide lead placement prior to device implantation.
35

Integrated electronics design for high-frequency intravascular ultrasound imaging

Gurun, Gokce 19 October 2011 (has links)
Close integration of front-end electronics and the transducer array within the catheter is critical for successful implementation of CMUT-based intravascular ultrasound (IVUS) imaging catheters to enable next generation imaging tools. Therefore, this research developed and implemented custom-designed electronic circuits and systems integrated with an IC compatible transducer technology for realization of miniature IVUS imaging catheters operating at 10-50 MHz frequency range. In one path of this research, an IC is custom designed in a 0.35-um CMOS process to monolithically integrate with a CMUT array (CMUT-on-CMOS) to realize a single-chip, highly-flexible, forward-looking (FL) IVUS imaging system. The amplifiers that are custom-designed achieved transducer thermal-mechanical noise dominated receive performance in a CMUT-on-CMOS implementation. In parallel to the FL-IVUS effort, for realization of a side-looking IVUS catheter based on an annular phased array, a dynamic receive beamformer IC is custom designed also in a 0.35-um CMOS process. Overall, the circuits and systems developed as part of this dissertation form a critical step in the translation of the research on CMUT-based IVUS catheters into real clinical applications for better management of coronary arterial diseases.
36

Ultrasound image processing and transmission for medical diagnosis /

Zheng, Xing. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 66-69). Also available in electronic version. Access restricted to campus users.
37

Integrated front-end analog circuits for mems sensors in ultrasound imaging and optical grating based microphone

Qureshi, Muhammad Shakeel. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Hasler, Paul; Committee Co-Chair: Degertekin, Levent; Committee Member: Anderson, David; Committee Member: Ayazi, Farrokh; Committee Member: Brand, Oliver; Committee Member: Hesketh, Peter. Part of the SMARTech Electronic Thesis and Dissertation Collection.
38

Ultrasound and photoacoustic imaging to guide and monitor photothermal therapy

Shah, Jignesh Mukesh, 1979- 02 October 2012 (has links)
Photothermal cancer therapy is a potential alternative to surgery and involves selective tissue destruction using thermal energy. Targeted photoabsorbers, used in conjunction with matching a continuous wave laser, make photothermal therapy both noninvasive and tumor-specific. However, to become clinically relevant, there is a need to develop an imaging technique to identify tissue composition and to detect the presence of photoabsorbers in the tumor volume before therapy; to monitor the temperature rise during therapy; and to assess the tumor damage after therapy. In this study, a combined ultrasound and photoacoustic imaging system was designed to assist photothermal therapy. The imaging system was tested on tissue mimicking phantoms, ex-vivo porcine tissue samples, ex-vivo mice and in-vivo mice. First, ultrasound imaging was utilized to differentiate between water-based and lipidbearing tissue. A combined ultrasound and photoacoustic imaging system was then assembled to identify the presence and spatial location of gold nanoparticles. Multiwavelength photoacoustic imaging was used to further confirm the presence of nanoparticles. Temperature monitoring algorithms, using both temperature-dependent time shifts in ultrasound signals and amplitude changes in photoacoustic signals, were developed. Finally, photothermal therapy was carried out on tumor-bearing nude mice using in-vivo ultrasound and photoacoustic imaging to identify the tumor boundary, detect the nanoparticles and monitor the temperature elevation. The results of the studies show that ultrasound and photoacoustic imaging provide complementary and clinically relevant information. Overall, there is potential of using the ultrasound and photoacoustic imaging system to plan, guide and monitor photothermal therapy. / text
39

Independent component analysis (ICA) applied to ultrasound image processing and tissue characterization /

Lai, Di. January 2009 (has links)
Thesis (Ph.D.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 173-179).
40

The role of cross-sectional and pulsed Doppler echocardiography in the management of patients with congenital heart disease : a changing practice /

Leung, Ping, Maurice. January 1991 (has links)
Thesis (M.D.)--University of Hong Kong, 1992. / Includes bibliographical references (leaf 189-216).

Page generated in 0.1065 seconds