• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterisation des suspensions par des methodes optiques. modelisation par reseaux de neurones

Bongono, Julien 03 September 2010 (has links) (PDF)
La sédimentation des suspensions aqueuses de particules minérales microniques, polydisperses et concentrées a été analysée à l'aide du Turbiscan MA 2000 fondé sur la diffusion multiple de la lumière, en vue d'établir la procédure qui permet de déceler la présence d'une morphologie fractale, puis de déduire les règles de comportements des suspensions fractales par la modélisation avec les réseaux de neurones. Le domaine des interactions interparticulaires physicochimiques (0 à 10% volumique en solide) a été privilégié.La méthodologie de détermination de la structure multifractale des agglomérats et de la suspension a été proposée. La modification structurale des agglomérats qui est à l'origine de comportements non linéaires des suspensions et qui dépend des propriétés cohésives des particules primaires, est interprétée par la variation de la mobilité électrophorétique des particules en suspension. Une approche d'estimation de ces modifications structurales par les réseaux de neurones, à travers la dimension fractale, a été présentée. Les limites du modèle à assimiler ces comportements particuliers ont été expliquées comme résultant du faible nombre d'exemples et de la grande variabilité des mesures aux faibles fractions volumiques en solide.
2

Caracterisation des suspensions par des methodes optiques. modelisation par reseaux de neurones / Characterization of suspensions using optical methods. neural networks modeling.

Bongono, Juilien 03 September 2010 (has links)
La sédimentation des suspensions aqueuses de particules minérales microniques, polydisperses et concentrées a été analysée à l’aide du Turbiscan MA 2000 fondé sur la diffusion multiple de la lumière, en vue d’établir la procédure qui permet de déceler la présence d’une morphologie fractale, puis de déduire les règles de comportements des suspensions fractales par la modélisation avec les réseaux de neurones. Le domaine des interactions interparticulaires physicochimiques (0 à 10% volumique en solide) a été privilégié.La méthodologie de détermination de la structure multifractale des agglomérats et de la suspension a été proposée. La modification structurale des agglomérats qui est à l’origine de comportements non linéaires des suspensions et qui dépend des propriétés cohésives des particules primaires, est interprétée par la variation de la mobilité électrophorétique des particules en suspension. Une approche d’estimation de ces modifications structurales par les réseaux de neurones, à travers la dimension fractale, a été présentée. Les limites du modèle à assimiler ces comportements particuliers ont été expliquées comme résultant du faible nombre d’exemples et de la grande variabilité des mesures aux faibles fractions volumiques en solide. / The sedimentation of aqueous suspensions of micron-sized mineral particles, polydisperses and concentrated, was analyzed using the Turbiscan MA 2000 based on the multiple light scattering in order to establish the procedure to detect the presence of a fractal morphology, and then to deduce the set of laws of fractal behavior of suspensions by modeling with neural networks. The methodology for determining the multifractal structure of agglomerates and the suspension was proposed. The structural modifications of the agglomerates at the origin of the nonlinear behavior of suspensions and which depends on cohesive properties of primary particles, is interpreted by the change of the electrophoretic mobility of suspended particles. The estimation by neural networks of these structural changes, through the fractal dimension has been presented. The limits of the model to learn these specific behaviors have been explained as resulting from the low number of examples and the great variability in the measurements at low volume fractions of solid.

Page generated in 0.1006 seconds