Spelling suggestions: "subject:"diapason à quartz"" "subject:"diapasons à quartz""
1 |
Microscopie thermique par sonde thermoélectrique / Thermal microscopy using thermoelectric probeBontempi, Alexia 06 May 2015 (has links)
Ce mémoire de thèse s’inscrit dans le développement d’un microscope thermique à sonde locale.Ce système d’imagerie présente deux modes de fonctionnement permettant de déterminer soit unetempérature de surface soit des propriétés thermophysiques de matériaux. Un micro-thermocouplebifilaire a été utilisé comme capteur thermique. Il est peu invasif et permet d’accéder à destempératures de surface sur une large gamme de température. De plus, le microscope offrel’avantage d’être moins sensible à la nature optique des échantillons que les méthodes en champlointain. Dans le but de maitriser le contact entre la sonde et la surface, un résonateur à quartz(diapason) a été utilisé comme capteur de force. Un système d’excitation original basé sur l’effetphoto-thermo-élastique a été mis au point. Le microscope fonctionne donc comme un SThM puisqu’ilpermet d’extraire simultanément des images topographiques et thermiques (régime périodique 2 et3 oméga). En revanche, les résultats obtenus ont permis de mettre en évidence les avantages dumicro-thermocouple en termes de résolutions spatiales topographiques vis-à-vis des techniques àsondes résistives fonctionnant en mode 3 oméga. / This PhD thesis deals with the development of a thermalmicroscope using a local probe. This imagingsystem presents two functioning modes that allow determining either surface temperature or thermalproperties of materials. A micro-wire thermocouple is used as a thermal sensor. It is less invasiveand allows measuring the surface temperature with a large temperature range. Furthermore, themicroscope offers an advantage to be less sensitive to the optical nature of a sample surface thanoptical methods. To control the contact between the probe and the surface, a quartz tuning fork hasbeen used as a force sensor. An original excitation system has been developed based on the photothermaleffect. The microscope works also as a SThM since it permits to extract simultaneouslytopographical and thermal pictures (2 and 3 omega periodical modes). Results underlining themicro-thermocouple advantages, in terms of topographical compared to resistive probe techniquesfunctioning with the 3 omega method, have been obtained.
|
2 |
Mise au point d'un système innovant de spectroscopie d'absorption multigaz par diodes lasers accordables dans le moyen infrarouge / Setting up an innovative multigas absorption spectroscopic system by tunable diode laser in the mid-infraredJahjah, Mohammad 16 November 2011 (has links)
La mesure des polluants fait l'objet depuis la fin du XXème siècle d'une attention toute particulière pour la préservation de la planète. Les espèces gazeuses, plus précisément le méthane, présent dans le MIR, possède des forces de raies très intenses, ce qui rend la technique plus sensible. La technique de détection de gaz utilisée durant ma thèse est choisie après une large comparaison entre différentes techniques appartenant à la SDLA. Cette technique est la technique QEPAS. Elle a montré depuis son invention en 2002, une grande sensibilité et sélectivité dans le domaine d'analyse de gaz. La source de lumière utilisée dans la QEPAS est une diode laser accordable (laser à SC), ce qui permet de rendre la technique plus sélective, en variant sa longueur d'onde d'émission en fonction du courant injecté et/ou température de régulation, pour se localiser sur une raie souhaitée à détecter. Le détecteur de la QEPAS est le diapason à quartz (QTF). Ce dernier est très sensible à la force minime appliquée par l'onde acoustique, ce qui rend la technique très sensible aux faibles concentrations. Plusieurs étapes de caractérisations sont exigées pour déterminer les caractéristiques de la diode laser et du QTF. Après le choix de la diode laser et du QTF, idéaux pour la spectroscopie, on passe à l'évaluation de la technique QEPAS dans le domaine d'analyse de gaz. Les limites de détection du méthane obtenues avec la technique QEPAS sont 0.8 ppmv et 400 ppbv à 2.3 µm avec un laser à Fabry-Pérot et un laser à cristaux photoniques, respectivement, et 100 ppbv à 3.3 µm avec un laser DFB.Ce travail a permis d'obtenir une technique performante (sensible, sélective, pas cher…), dans le domaine d'analyse de gaz. / The measurement of the pollutants is the subject since the late twentieth century especially in attention to protecting the planet. The gaseous species, specifically methane, present in the MIR, has strengths rays very intense, making the technique more sensitive.The detection technique of gas used during my PhD was chosen after an extensive comparison of different techniques belonging to the SDLA. This technique is the QEPAS technique. It has shown since its invention in 2002, a high sensitivity and selectivity in gas analysis. The light source used in the QEPAS is a tunable diode laser (Laser SC), thus making the technique more selectively, by varying the wavelength of emission as a function of injected current and / or control temperature to be located on a line desired to detect. The detector is QEPAS of quartz tuning fork (QTF). The latter is very sensitive to small force applied by the acoustic wave, which makes the technique very sensitive to low concentrations. Several steps are required characterization to determine the characteristics of the laser diode and the QTF. After choosing the laser diode and the QTF, ideal for spectroscopy, we pass to the evaluation of the technique QEPAS in gas analysis. The detection limits of methane obtained with the technique are QEPAS 0.8 ppmv and 400 ppbv to 2.3 microns with a Fabry-Perot laser and a photonic crystal laser, respectively, and 100 ppbv to 3.3 microns with a DFB laser.This work has provided a powerful technique (sensitive, selective, cheap ...) in gas analysis.
|
3 |
Etude du transport électronique dans les nanodispositifs semiconducteurs par microscopie à grille locale / Study of electron transport in semiconductor nanodevices by Scanning Gate MicroscopyLiu, Peng 30 September 2011 (has links)
La microscopie de grille à balayage (SGM pour Scanning GateMicroscopy), développée à la fin des années 1990, est devenue un outilpuissant pour étudier les propriétés électroniques locales dans lesnano-dispositifs semi-conducteurs. La SGM est basée sur la techniqueAFM, mais la pointe métallique est utilisée comme une grille mobilecouplée capacitivement au dispositif, et les propriétés de transportélectronique sont étudiées sous l'influence de cette grille,fournissant des informations spatiales à haute résolution. Cette thèsedécrit d'abord le remplacement de la détection optique de notresystème AFM par une détection piézo-électrique utilisant un diapason àquartz, puis les résultats de mesures SGM sur divers nano-dispositifs,qui sont tous fabriqués à partir d'hétérostructures InGaAs / InAlAscontenant un gaz d'électrons bi-dimensionnel (2DEG) de grande mobilitésitué à quelques dizaines de nanomètres sous la surface. Sur unesimple constriction, nous étudions l'interaction pointe-échantillonavec deux approches: la force électrostatique et l'effet capacitif.Sur une boite quantique, nous étudions les phénomènes de blocage deCoulomb lorsque la pointe est utilisée comme une grille pour modulerla charge à l'intérieur de la boite. Dans un travail sur le paradoxede Braess, avec l'aide de simulations numériques, nous découvrons uneffet paradoxal en modulant la largeur du canal central dans undispositif mésoscopique en forme de double anneau, en analogie avec leparadoxe qui se produit dans un réseau classique. Par une étudedétaillée de l'évolution de la conductance, nous découvrons enfinplusieurs pièges de charge dans les images SGM, et proposons un modèlepour interpréter le changement de conductance en présence de pièges decharge. Nous développons alors une méthode pour imager directement lespièges de charge par des mesures de transconductance avec unemodulation de la tension sur la pointe. / Scanning gate microscopy (SGM), developed in the late 1990's, has become a powerful tool to investigate the local electronic properties in semiconductor nano devices. SGM is based on the AFM technique but the metallic tip is used as a movable gate capacitively coupled to the device, and the electron transport property is studied on influence of this gate, providing spatial information with high resolution. This thesis presents the update of the force detection mode of our AFM system from optical method to force sensing by a quartz tuning fork, and the SGM measurement results on various nano devices, all of which are fabricated from InGaAs/InAlAs heterostructures containing a high mobility 2DEG located a few tens of nanometers below the surface. On a 2DEG constriction, we investigate the tip-sample interaction with two approaches: the capacitive force and the gate effect. On a quantum dot, we study the Coulomb blockade phenomena where the tip is used as a gate to modulate the charging/discharging inside the dot. In a work on Braess paradox, with the help of numerical simulations, we discover a Braess paradox effect by modulating a channel width in a ‘double-ring' shaped mesoscopic device in analogy with the one that occurs in a classical network. By a detailed study of the conductance changes, we discover several charge traps from the SGM map, and propose a model to interpret the conductance change with the presence of charge traps. We develop a method to directly image the charge traps by transconductance measurements with a voltage modulation on the tip.
|
4 |
Progrès en thermométrie quantitative aux échelles micro et nanométriques par microscopie thermique à balayage (SThM) / Advances in quantitative micro/nanoscale thermometry using scanning thermal microscopyNguyen, Tran Phong 18 January 2018 (has links)
Les caractérisations thermiques à l'échelle nanométrique restent un défi depuis l'émergence de dispositifs nano structurés. Ayant des avantages en termes de résolution latérale par rapport aux techniques de champ lointain, la microscopie thermique à balayage est devenue un outil essentiel pour la caractérisation locale des propriétés thermiques des matériaux. Dans le cadre du projet européen « Quantiheat », plusieurs laboratoires ont travaillé ensemble pour essayer de comprendre et d'obtenir des mesures quantitatives couvrant les échelles spatiales allant du micro au nanomètre.Ce document contient six chapitres avec quatre parties principales, dans lesquelles des sondes SThM à thermocouples microfilaires ont été utilisées pour améliorer nos connaissances en thermométrie quantitative à cette échelle. Ce type de sonde a été développé et amélioré pendant plusieurs années. Nous démontrons qu'il est adapté pour mesurer la température d’échantillons actifs ainsi que la conductivité thermique d’échantillons passifs.Grâce à la thèse, la dernière version du microscope (matériel, logiciel) et la conception de la sonde sont présentés. Fixé sur un diapason en quartz, la force de contact pointe-échantillon peut être quantifiée. Placé dans une chambre à vide, ce système permet un contrôle complet des paramètres prédominants sur la mesure, tels que la pression de l'air et la force de contact. Les mesures en modes actif et passif ont pu être menées grâce aux échantillons fournis par les partenaires du projet « Quantiheat » afin de démontrer que des mesures quantitatives sont envisageables. En changeant les conditions ambiantes allant du vide primaire à la pression ambiante, les mécanismes de transfert de chaleur de l'échantillon-pointe ont été analysés en détail pour mettre en évidence le rôle prépondérant de l'air et des conductions de contact solide-solide. / Thermal characterizations at nano-scale remain a challenge since the emergence of nano-structured devices. Having advantages in term of lateral resolution compared to far field techniques, the scanning thermal microscopy has become an essential tool for local materials heat transport characterization. In the frame of the European Quantiheat Project, several laboratories have worked together trying to figure out and to obtain quantitative thermal measurements covering spatial scales from the micrometre to the nanometre.This document contains six chapters with four main parts, in which micro-wire thermocouple based SThM probes have been used to enhance our knowledge in quantitative thermometry at this scale. This kind of probe has been developed and improved for several years. We demonstrate that it is adapted for measuring temperature of active samples as well as thermal conductivity of passive samples.Through the dissertation, the last version of the microscope (hardware, software) and probe design are presented. Attached on a quartz tuning fork, the tip-sample contact force can be quantified. Placed in a vacuum chamber, this system permits a full control of predominant parameters on the measurement such as air pressure and contact force. Thanks to samples provided by Quantiheat partners, measurements in active and passive modes have been performed to demonstrate that quantitative measurements are feasible. By changing ambient conditions from primary vacuum to ambient pressure, the tip-sample heat transfer mechanisms have been analysed in detail to reveal the preponderant role of air and solid-solid contact conductions.
|
5 |
Etude du transport électronique dans les nanodispositifs semiconducteurs par microscopie à grille localeLiu, Peng 30 September 2011 (has links) (PDF)
La microscopie de grille à balayage (SGM pour Scanning GateMicroscopy), développée à la fin des années 1990, est devenue un outilpuissant pour étudier les propriétés électroniques locales dans lesnano-dispositifs semi-conducteurs. La SGM est basée sur la techniqueAFM, mais la pointe métallique est utilisée comme une grille mobilecouplée capacitivement au dispositif, et les propriétés de transportélectronique sont étudiées sous l'influence de cette grille,fournissant des informations spatiales à haute résolution. Cette thèsedécrit d'abord le remplacement de la détection optique de notresystème AFM par une détection piézo-électrique utilisant un diapason àquartz, puis les résultats de mesures SGM sur divers nano-dispositifs,qui sont tous fabriqués à partir d'hétérostructures InGaAs / InAlAscontenant un gaz d'électrons bi-dimensionnel (2DEG) de grande mobilitésitué à quelques dizaines de nanomètres sous la surface. Sur unesimple constriction, nous étudions l'interaction pointe-échantillonavec deux approches: la force électrostatique et l'effet capacitif.Sur une boite quantique, nous étudions les phénomènes de blocage deCoulomb lorsque la pointe est utilisée comme une grille pour modulerla charge à l'intérieur de la boite. Dans un travail sur le paradoxede Braess, avec l'aide de simulations numériques, nous découvrons uneffet paradoxal en modulant la largeur du canal central dans undispositif mésoscopique en forme de double anneau, en analogie avec leparadoxe qui se produit dans un réseau classique. Par une étudedétaillée de l'évolution de la conductance, nous découvrons enfinplusieurs pièges de charge dans les images SGM, et proposons un modèlepour interpréter le changement de conductance en présence de pièges decharge. Nous développons alors une méthode pour imager directement lespièges de charge par des mesures de transconductance avec unemodulation de la tension sur la pointe.
|
Page generated in 0.0358 seconds