• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Décohérence et intéractions dans les dispositifs d' optique quantique électronique / Decoherence and interactions in electron quantum optics setups

Wahl, Claire 23 September 2014 (has links)
On considère un analogue électronique de l'interféromètre de Hong-Ou-Mandel (HOM), dans lequel deux électrons uniques propagent selon des états de bords chiraux opposés et rentrent en collision au niveau d'un point contact quantique. En étudiant le bruit de courant, on montre qu'en raison des interactions entre les canaux co-propageant, le degré d'indistinctibilité entre deux paquets d'ondes électroniques est dramatiquement réduit, ce qui résulte en un contraste réduit pour le signal HOM. Ce phénomène de décohérence dépend fortement de la résolution en énergie des paquets. Étant donné que les interactions provoquent la fractionalisation de la charge, on montre que le mode de charge et le mode neutre interfèrent l'un avec l'autre, ce qui crée des creux ou des pics satellites dans le bruit de courant. Nos calculs expliquent de récents résultats expérimentaux qui révèlent un signal électronique HOM avec un contraste réduit. / We consider an electronic analog of the Hong-Ou-Mandel (HOM) interferometer, where two single electrons travel along opposite chiral edge states and collide at a Quantum Point Contact. Studying the current noise, we show that because of interactions between co-propagating edge states, the degree of indistinguishability between the two electron wavepackets is dramatically reduced, leading to reduced contrast for the HOM signal. This decoherence phenomenon strongly depends on the energy resolution of the packets. Insofar as interactions cause charge fractionalization, we show that charge and neutral modes interfere with each other, leading to satellite dips or peaks in the current noise. Our calculations explain recent experimental results where an electronic HOM signal with reduced contrast was observed.
2

Non-linéarité optique géante à deux modes à partir d'une boîte quantique semi-conductrice dans un fil photonique / Two-mode giant optical non-linearity with a single quantum dot in a photonic waveguide

Nguyen, Hoai Anh 12 May 2016 (has links)
Contrôler la lumière avec de la lumière au niveau du photon unique est un objectif fondamental dans le domaine de l'information quantique, ou de l'ordinateur optique à très basse puissance. Un émetteur quantique constitué d'un unique système à deux niveaux est un milieu très non-linéaire, pour lequel l'interaction avec un photon peut modifier la transmission d'un photon suivant. Dans ce scenario, le défi pour obtenir une telle non-linéarité géante est d'optimiser l'interaction lumière matière. Une solution à ce défi est d’insérer l'émetteur quantique dans une structure photonique. Ce système est appelé « atome uni-dimensionnel » : la collection de la lumière, tout comme la probabilité d'absorber un photon se propageant dans la structure est maximum.Dans ce travail, nous avons utilisé ce type de système pour réaliser une non-linéarité géante à deux modes, dans laquelle la réflexion d'un des modes est contrôlée par un autre mode au niveau du photon unique. Le système est constitué d'une boite quantique semi-conductrice InAs/GaAs, qui peut être considéré comme un atome artificiel, insérée dans un fil photonique en GaAs opérant comme un guide d'onde. Le fil photonique définit un mode spatial unique autour de l'émetteur et offre une interaction lumière-matière avec une efficacité quasi-idéale. De plus, ce fil photonique présente cette propriété sur une large bande spectrale. Grâce à ces deux propriétés, nous avons démontré expérimentalement une non-linéarité géante à un mode et à deux modes à un niveau de quelques dizaines de photons par durée de vie de l'émetteur. Cela permet de réaliser un interrupteur tout optique intégré, à très faible seuil. / Controlling light by light at the single photon level is a fundamental quest in the field of quantum computing, quantum information science and classical ultra-low power optical computing. A quantum light emitter made of a single two-level system is a highly non-linear medium, where the interaction of one photon with the medium can modify the transmission of another incoming photon. In this scenario, the most challenging issue to obtain a giant optical non-linearity is to optimize photon-emitter interaction. This issue can be overcome by inserting the quantum emitter inside a photonic structure. This system is known as “one-dimensional atom”: the light collection efficiency as well as the probability for an emitter to absorb a photon fed into the structure is maximum. In this study, we aim at using such kind of system to experimentally realize a two-mode giant non-linearity, in which the reflection of one light mode is controlled by another light mode at the single-photon level. The system consists of a semiconductor InAs/GaAs quantum dot, which can be considered as an artificial atom, embedded inside a GaAs photonic wire, which is an optical waveguide. The photonic wire defines a single spatial mode around the emitter and offers a close to unity light-emitter interaction efficiency. In addition, the photonic wire also possesses a spectrally broadband operation range. Thanks to these two excellent features of the system, we experimentally demonstrate in this thesis a single-mode and a two-mode giant non-linearity obtained at the level of just a few tens of photons per emitter lifetime. This realizes an integrated ultra-low power all-optical switch.
3

Spin dynamics and structural modifications of Co2MnSi Heusler alloys by helium ions irradiation / Modifications structurales et dynamiques de spins d'alliages Heusler Co2MnSi irradiés aux ions He+

Abdallah, Iman 23 May 2016 (has links)
L'électronique de spins est basée sur le principe que l'électron possède une charge mais aussi un spin. Cette nouvelle électronique est née de de la découverte de la magnétorésistance géante (GMR) par A. Fert et P. Grunberg en 1988 qui furent récompensés par le prix Nobel de physique en 2007. Ceci a révolutionné le domaine des capteurs de champ magnétiques ainsi que le stockage at le traitement de données. Les mécanismes de base de la GMR et la Magnéto Résistance Tunnel (TMR) repose sur la polarisation de spin, qui correspond à l'orientation préférentielle dans une direction du spin des électrons de conduction. Par conséquent, l'obtention de matériaux présentant à la fois une forte polarisation en spins et un faible coefficient d'amortissement dynamique fait aujourd'hui l'objet d'une recherche très importante. Dans ce domaine, l'alliage d'Heusler Co2MnSi est très prometteur car il est prévu qu'il soit demi-métallique (polarisation en spins de 100%), avec un coefficient d'amortissement en-dessous de 10-3, soit environ un ordre de grandeur plus faible que les matériaux ferromagnétiques habituellement utilisés en microélectronique. De plus sa température de Curie autour de 800 K lui assure une bonne stabilité thermique pour les applications à température ambiante. Dans ce travail, nous avons étudié les corrélations entre les propriétés structurales et magnétiques de cet alliage Pour atteindre notre objectif, nous avons mesuré l'évolution des paramètres magnétiques statiques et dynamiques du Co2MnSi en fonction du désordre atomique induit par irradiation aux ions He+ at 150 KeV. Pour cela, nous avons combiné plusieurs techniques expérimentales. Les échantillons sont d'abord fabriqués par pulvérisation cathodique sur des substrats MgO. Ils sont ensuite irradiés avec des ions He+ à 150 KeV Les propriétés structurales des échantillons ont été étudiées par diffraction de rayons X en conditions normales et résonante, par microscopie électronique à transmission (TEM), notamment en mode d'imagerie HAADF-STEM. Cette partie de notre étude a été réalisée en collaboration avec les laboratoires LAAS-CNRS à Toulouse et INA-ARAID à l'Université de Saragosse (Espagne). Les propriétés magnétiques statiques ont été mesurées par Effet Kerr Magneto optique (MOKE), et magnétométrie (PPMS) au laboratoire de LPCNO à Toulouse. Les propriétés dynamiques quant à elles ont été mesurées à l'aide d'un banc de mesure de résonance ferromagnétique large bande développé au CEMES pendant cette thèse. Les résultats obtenus ont montré le lien entre la déformation tétragonal de la cellule élémentaire et l'apparition d'un axe d'anisotropie uni axial dans le matériau. De plus, nous avons montré que les propriétés magnétiques et dynamiques étaient peu affectées dans la phase cristalline B2. En revanche, l'effet de l'irradiation ionique sur la phase cristalline L21 est d'augmenter le désordre de type Co/Mn qui s'accompagne d'une forte diminution de l'aimantation de de la constante d'échange ainsi que d'une augmentation de l'anisotropie cubique et du coefficient de relaxation dynamique. / Spintronic, which involve electron's in addition to its charge, has emerged from the discovery of Giant Magnetoresistance (GMR) by A. Fert and P. Grunberg in 1988, rewarded by a Nobel Prize in 2007. It has revolutionized the field of sensor devices. The basic mechanism of GMR and also of the Tunneling Magneto Resistance (TMR) relies on the spin polarization. Therefore there is today an intense research to find materials with both high spin polarization and low damping coefficient for the development of new generation of spintronic devices. In this field, one promising route concerns the Co2MnSi (CMS) Heusler alloy which is predicted to be half metals (i.e.100% spin polarization), with a weak Gilbert damping coefficient below 10-3, about one order of magnitude below the usual ferromagnetic material used in microelectronics. Its high Curie temperature up to 800° K also provides stability for devices working at room temperature. In this work, we study the correlations between the structural and magnetic properties of the Co2MnSi. To achieve our goal, we measure the evolution of the static and dynamic magnetic parameters of the Co2MnSi alloy in which atomic disorder is induced by He+ ion irradiation at 150 KeV. The samples are grown by magnetron sputtering on MgO substrates and then irradiated with light He+ ions. In order to correlate the structural and magnetic modifications of the alloy we combined several experimental techniques. CMS structure was investigated by X-ray diffraction and Transmission Electron Microscopy (TEM), in particular HAADF-STEM imaging mode. The evolution of the static and dynamic magnetic properties of the samples has been measured by means of Magneto Optic Kerr Effect (MOKE), Physical Properties Measurements System (PPMS) at the LPCNO laboratory in Toulouse and Ferromagnetic Resonance (FMR). The FMR set-up has been developed at the CEMES during this PhD. The main results of this work consists of correlation between the tetragonal deformations of the crystalline structure followed by the appearance of uniaxial anisotropy in the material upon irradiation. Furthermore, we demonstrate that the magnetic parameters of the B2 order are slightly affected by irradiation. But for the L21 phase, static and dynamic magnetic properties are drastically affected by irradiation, by the decrease in magnetization saturation, and exchange constant due to the Mn/Co disorder type and an increase of the cubic anisotropy and dynamic relaxation.
4

Epitaxial Rhenium, un supraconducteur en limite propre pour des Qbits supraconducteurs / Epitaxial Rhenium, a clean limit superconductor for superconducting Qbits

Ratter, Kitti 20 October 2017 (has links)
L'auteur n'a pas fourni de résumé en français / The epitaxial growth condition and the superconducting properties of nanostructured devices made of rhenium (superconducting below T=1.7 K) on sapphire were explored. Epitaxial growth of rhenium thin films onto a single crystal α-Al2O3(001) substrate was realised using molecular beam epitaxy. The cleanness of the substrate was verified using XPS, and the growth of rhenium was monitored using RHEED. The orientations of the two crystals are (0001)Al2O3//(0001)Re and <2110>Al2O3//<0110>Re, which was confirmed using X-ray diffraction. The in-plane misfit between the lattices is -0.43% at room temperature, which allows us to estimate the critical thickness of rhenium to be between 10 nm and 15 nm.For deposition, rhenium was heated using an electron beam. Substrates were heated during growth using either a Joule-heated W filament located behind the sample or electron bombardment. Generally deposition temperatures of 800◦C and 900◦C gave reproducible results.The effect of deposition temperature was studied on samples that had the same thickness but were deposited at different temperatures. Three thickness groups were selected: 25 nm, 50 nm and 100 nm. Every sample was dominated by the (001) epitaxial orientation. Orientations (110), (100), (101) were present, but their intensities were small and decreased with increasing deposition temperature. AFM imaging was used to observe the morphology of the films. The 25 nm thick films were decorated with grains. The diameter of the grains (∼ 50 nm) did not vary significantly on the 25 nm thick sample, however, they became more uniform with increasing deposition temperature, and the surface became smoother. On the 50 nm and 100 nm thick films spirals and holes can be observed. Diameter of spirals on the 50 nm thick film increased from 100 nm to 500 nm when the temperature of the deposition was increased from 800◦C to 900◦C. XRD rocking curves measured on all samples got narrower with increasing deposition temperatures, indicating lower mosaicity of the (001) crystals. High-resolution θ-2θ scans evidenced a disorder in the 50 nm thick film, corresponding to strain values in the range of 0.01. Deposition temperature of 1000◦C lead to the dewetting of a 50 nm thick sample, islands with atomically flat surfaces were formed.The frequently observed spirals are most likely the result of screw dislocations. The origin of the holes that accompany the spirals is a dewetting process that starts when the thickness of the film reaches ~10 nm. We quantified the temperature evolution of the film during growth taking into account emission, reflection and transmission between all surfaces. This thermal model confirmed that the temperature of the film increases as the thickness of the rhenium film grows. The dewetting was studied using Mullins’ theory of thermal grooving. A surface diffusion coefficient of 4E−12 cm2/s was obtained, which is consistent with the observed dimensions of the surface topography.Wires with widths ranging from 100 nm to 3 μm and SQUIDs were fabricated from the rhenium films. Transport measurements confirmed that the lithography process does not affect the superconducting properties of rhenium. Critical temperatures between 1.43 K and 1.96 K were measured. We could correlate the superconducting transition temperature with the topography and the crystallinity of the films. Mean free path of electrons, and the superconducting coherence length were obtained, for two of the films both mean free path and effective coherence length were over 100 nm. These two films were in the clean limit, but the fabricated wires were in the dirty limit.On one film SQUIDs of 1 um diameter with 50 nm and 20 nm wide nanobridges acting as Josephson junctions were fabricated. The SQUIDs were cooled down using a dilution refrigerator. Critical current oscillations were measured. The flux noise values obtained were as low as 2.6E−5 Φ0/Hz1/2.
5

Quantum Hall effect in graphene for resistance metrology : Disorder and quantization / Effet Hall quantique dans le graphène pour la métrologie des résistances : désordre et quantification

Lafont, Fabien 09 April 2015 (has links)
L’effet Hall quantique (EHQ) apparaissant dans des gaz bidimentionnels d’électrons places à basse température et sous fort champ magnétique a révolutionné la métrologie des résistances depuis sa découverte en 1980 par Klaus von Klitzing. Cet effet apporte une représentation de l’ohm uniquement basé sur la constante de Planck et la charge de l’électron. En 2004, le graphène, un arrangement purement bi-dimensionnel d’atomes de carbone en nid d’abeille, dans lequel les porteurs de charge se comportent comme des fermions de Dirac, a permis de mettre à jour une nouvel effet Hall quantique. Du point de vue de la métrologie des résistances l’EHQ dans le graphène est très prometteur car plus robuste que celui apparaissant dans les hétérostructures semi-conductrices. Ceci pourrait mener à la création d’un étalon de résistance plus pratique, fonctionnant à plus haute température et plus faible champ magnétique ce qui serait un avantage notable pour une dissémination accrue d’un étalon de résistance précis vers les acteurs industriels. Dans ce manuscrit une étude complète de l’impact des défauts linéaires, omniprésent dans le graphène crû par dépôt chimique en phase vapeur sur métal, dans le régime d’effet Hall quantique est menée. Nous avons montré que ces défauts linéaires mènent à des processus de dissipation non-conventionnels qui viennent altérer la quantification de la résistance de Hall. Cette étude pointe vers l’utilisation de monocristaux pour les prochaines investigations du graphène CVD pour une application en métrologie des résistances. La deuxième partie de ce manuscrit est dédiée à l’étude du graphène crû par dépôt chimique en phase vapeur sur carbure de silicium. Nous avons comparé précisément la résistance de Hall d’un échantillon de graphène entre 10 et 19 T à la température de 1.4 K avec celle donnée par un étalon de résistance en GaAs/AlGaAs avec une incertitude relative de ( -2 ± 4 ) × 10⁻¹⁰. Pour la première fois un étalon de résistance en graphène a pu fonctionner dans les mêmes conditions de température et de champs magnétique que celui fabriqué en GaAs/AlGaAs et de plus sur un intervalle de champ magnétique plus de dix fois plus grand. Nous avons également étudié les processus de dissipation apparaissant dans cet échantillon de graphène. Cette étude montre que la longueur de localisation des porteurs de charge sature à une valeur proche de l’extension de la fonction d’onde et ce sur une grande plage de champs magnétique, ce qui soulève des questions intéressantes concernant le désordre présent dans ce type de graphène. Finalement dans un second échantillon provenant de la même technique de fabrication nous avons comparé précisément la résistance de Hall de l’échantillon de graphène avec celle d’un étalon de résistance en GaAs/AlGaAs. Il apparait que la résistance de Hall dans l’échantillon de graphène est quantifié avec une précision métrologique pour des champs magnétiques allant jusqu’à 3.5 T, des températures atteignant 9 K et reste dans un état non dissipatif jusqu’à des courants de 500 µA. Ceci ouvre une voie directe à la réalisation d’étalons quantiques de résistance réalisés en graphène. / The quantum Hall effect (QHE) observed in two dimensional electron gas placed at low temperature and under a strong perpendicular magnetic field, has revolutionized the resistance metrology since its discovery in 1980 by Klaus von Klitzing. It provides a representation of the ohm based on the Planck constant and the electron charge only. In 2004, graphene, a purely two dimensional arrangement of carbon atoms in an honeycomb lattice, where the charge carriers behave as Dirac fermions, has revealed a new flavor of the QHE. From the metrological point of view the QHE in graphene is very promising since it is much more robust than the effect appearing in conventional semiconductors and it could lead to a more convenient resistance standard operating at higher temperature and lower magnetic induction which is an advantage for a broader dissemination of a precise standard towards industrial end-users. In this manuscript, a complete study about the impact in the QHE regime of line defects such as wrinkles or grain boundaries, ubiquitous in graphene grown by chemical vapor deposition on metal is treated. We show that these line defects lead to a non conventional dissipation mechanism that jeopardize the quantum Hall effect accuracy pointing to the use of wrinkle-free monocrystals for further metrological studies. The second part of my manuscript is focused on monolayer graphene grown by chemical vapor deposition on silicon carbide. We precisely compared the Hall resistance of the graphene sample from 10 T to 19 T at the temperature of 1.4 K with a GaAs/AlGaAs resistance standard with a relative uncertainty of ( -2 ± 4 ) × 10⁻¹⁰. For the first time a graphene-based standard was able to operate in the same temperature and magnetic field conditions as semiconductor-based one, furthermore, on a magnetic range more than ten times larger. We thus made a careful study of the dissipation mechanisms taking place in this sample and measured precisely the magnitude of the localization length in the QHE regime that saturate interestingly at the extension of the charge carrier wavefunction itself, opening interesting questions about the close link between Hall quantization and localization physics in graphene grown on SiC. Finally in a second sample grown using the same technique we precisely compared the Hall resistance of the graphene sample and a GaAs/AlGaAs resistance standard that turned out to be in agreement at the metrological level for magnetic fields as low as 3.5 T current as high as 500 µA and temperature as high 9 K. This paves the way for the realization of easy to use quantum Hall resistance standards made out of graphene.
6

Single spin control and readout in silicon coupled quantum dots / Contrôle et lecture de spin unique dans des boites quantiques de silicium couplés

Corna, Andrea 20 January 2017 (has links)
Au cours des dernières années le silicium est apparu comme un matériau hôte prometteur pour les qubits de spin. Grâce à la microélectronique moderne, la technologie du silicium a connu un formidable développement. Réaliser des qubits utilisant la technologie bien établie de fabrication CMOS de semi-conducteurs favoriserait clairement leur intégration à grande échelle.Dans cette thèse nous présentons les travaux effectués dans une perspective des qubits CMOS. En particulier, nous avons abordé les problèmes de confinement des charges et des spins dans les boîtes quantiques, la manipulation des spins et la lecture des charges et des spins.Nous avons exploré les différentes propriétés de confinement de charge et de spin dans des échantillons de tailles et de géométries différentes. Les MOSFETs de taille extrêmement réduites montrent du blocage de Coulomb jusqu'à température ambiante, avec des énergies de charges jusqu'à 200meV. Les dispositifs multi-grilles avec des dimensions géométriques plus grandes ont été utilisés pour confiner les spins et lire leur état par blocage de spin, en réalisant ainsi une conversion spin / charge.La manipulation des spins est réalisée au moyen d'un dipôle électronique induisant la résonance de spin (EDSR). Les deux plus basses vallées de la bande de conduction du silicium sont visibles sous forme de transitions de spin intra et inter-vallées. Nous observons une levée de dégénérescence de vallée d'amplitude 36μeV. La résonance de spin que l'on observe résulte de la géométrie spécifique de l'échantillon, de la physique des vallées et de l'interaction spin-orbite de type Rashba. Des signatures de manipulation cohérente, sous forme d'oscillations de Rabi, ont été mesurées, avec une fréquence de Rabi de 6MHz. Nous discutons également de la lecture rapide des charges et des spins effectuée par réflectométrie dispersive couplée à la grille. Nous montrons comment l'utiliser pour reconstruire le diagramme de stabilité de charge du dispositif et le signal attendu pour un système à double boîte isolé. La tension de polarisation finie modifie la réponse du système et nous l'avons utilisée pour sonder les états excités et leur dynamique. / In the recent years, silicon has emerged as a promising host material for spin qubits. Thanks to its widespread use in modern microelectronics, silicon technology has seen a tremendous development. Realizing qubit devices using well-established complementary metal-oxide-semiconductor (CMOS) fabrication technology would clearly favor their large scale integration.In this thesis we present a detailed study on CMOS devices in a perspective of qubit operability.In particular we tackled the problems of charge and spin confinement in quantum dots, spin manipulation and charge and spin readout.We explored the different charge and spin confinement capabilities of samples with different sizes and geometries. Ultrascaled MOSFETs show Coulomb blockade up to room temperature with charging energies up to 200meV. Multigate devices with larger geometrical dimensions have been used to confine spins and read their states through spin-blockade as a way to perform spin to charge conversion.Spin manipulation is achieved by means of Electron Dipole induced Spin Resonance (EDSR). The two lowest valleys of silicon's conduction band originate as intra and inter-valley spin transitions; we probe a valley splitting of 36μeV. The origin of this spin resonance is explained as an effect of the specific geometry of the sample combined with valley physics and Rashba spin-orbit interaction. Signatures of coherent Rabi oscillations have been measured, with a Rabi frequency of 6MHz. We also discuss fast charge and spin readout performed by dispersive gate-coupled reflectometry. We show how to use it to recover the complete charge stability diagram of the device and the expected signal for an isolated double dot system. Finite bias changes the response of the system and we used it to probe excited states and their dynamics.
7

Phénomènes électriques et thermiques dans des nanostructures supraconductrices / Thermoelectric phenomena in superconducting nanostructures

Di Marco, Angelo 02 March 2015 (has links)
Ma thèse de doctorat traite de l'étude théorique des phénomènes thermoélectriques qui se produisent dans des nanostructures supraconductrices qui sont l'objet de plusieurs lignes de recherche de la physique de la matière condensée. Nous nous focalisons sur quatre dispositifs basés sur les supraconducteurs et de minces barrières isolantes où le transport de la charge et de la chaleur est gouverné par l'effet tunnel quantique. Nous commençons par analyser une jonction métal Normal-Isolant-Supraconducteur (N-I-S). En principe, aucun courant à une particule ne peut s'écouler dans ce circuit quand le voltage de polarisation est en dessous du gap d'énergie de S. Pourtant, un courant de fuite en dessous du gap est observé dans la courbe caractéristique courant-voltage (I-V) expérimental de ce dispositif, même à très basses températures. Nous montrons que l'absorption de photons de l'environnement électromagnétique à haute température connecté à la jonction est une origine possible du processus de tunnel à un électron en dessous du gap. Nous considérons une jonction N-I-S connectée à l'environnement soit directement soit indirectement au moyen d'une ligne de transmission résistif à basse température. Nous analysons analytiquement et numériquement le courant en dessous du gap dans ces deux circuits. Ensuite nous considérons un transistor hybride à un électron (SET) constitué d'une île de métal normal N contrôlée avec une tension de grille et connectée, au moyen de deux jonctions à effet tunnel, à deux fils supraconducteurs S polarisés en tension (S-I-N-I-S). Lorsque l'on fait varier le voltage de N correctement dans le temps, un courant contrôlable à un électron s'écoule entre les deux supraconducteurs. En principe, la réflexion d'Andreev, c'est-à-dire l'effet tunnel à deux électrons de N à S, peut être interdite. Expérimentalement, ce processus à deux particules contribue aussi au courant total à travers le SET. Nous montrons que l'échange de photons entre ce dispositif et l'environnement électromagnétique où il est disposé rend la réflexion d'Andreev énergétiquement possible. De plus, nous discutons comment cet effet limite la précision du processus de tunnel à un électron nécessaire pour les applications métrologiques. Ensuite nous nous focalisons sur les caractéristiques thermodynamiques des jonctions supraconductrices à effet tunnel. Nous discutons d'abord des capacités de refroidissement électronique des dispositifs à double jonction S1-I-N-I-S1 et S2-I-S1-I-S2, où les supraconducteurs S2 et S1 ont un gap d'énergie différent. Après nous étudions le design et le fonctionnement d'un nanoréfrigérateur électronique à cascade basé sur une combinaison de ces deux structures. Nous montrons numériquement que une île de métal normal peut être réfrigérée au dessous de 100 mK à partir d'une température de 500 mK. Nous discutons ensuite de la réalisation pratique et des limitations d'un tel dispositif. Enfin, nous considérons la dynamique d'une jonction à sauts de phase quantique (QPSJ) connectée à une source de micro-ondes. En ce qui concerne une jonction Josephson ordinaire, une QPSJ peut montrer des marches de Shapiro duals, c'est-à-dire des plateaux de courant bien définis situés à des multiples entiers de la fréquence des micro-ondes dans la courbe caractéristique I-V. Aucune observation expérimentale n'a abouti jusqu'à maintenant. Les fluctuations thermiques et quantiques peuvent nettement étaler la courbe I-V. Pour comprendre ces effets, nous déterminons la caractéristique I-V d'une QPSJ polarisée en courant, irradiée avec des micro-ondes et connectée à un environnement résistif et inductif. Nous montrons que l'effet de ces fluctuations est gouverné par la résistance de l'environnement et par le rapport entre l'énergie de phase-slip et l'énergie inductive. Nos résultats sont importants pour les expériences qui visent à l'observation des marches de Shapiro duals dans les QPSJ pour la définition du courant quantique standard. / The aim of my Ph.D. thesis is to study theoretically the thermoelectric phenomena occurring in some superconducting nanostructures which are the object of various research lines in condensed matter physics. Specifically, we focus on four different devices based on superconductors and insulating tunnel barriers where both charge and heat transport are governed by the quantum tunneling effect. We start by considering a voltage-biased Normal metal-Insulator-Superconductor (N-I-S) tunnel junction. No single-particle current is expected to flow in this circuit when the applied voltage is below the superconducting energy gap of S. However, in real experiments, a subgap leakage current is observed in the current-voltage (I-V) characteristic of this device, even at very low temperatures. We show that the absorption of photons from the high-temperature electromagnetic environment connected to the junction is a possible origin of the single-particle tunneling below the gap. We first consider a N-I-S junction directly coupled to the environment. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between them. For both these circuits, we analyze analytically and numerically the subgap leakage current. We find, in particular, that it is exponentially suppressed as the length and the resistance per unit length of the line are increased. Then, we go beyond the single N-I-S junction considering a hybrid single-electron transistor (SET) constituted by a gate-controlled normal-metal island (N) connected to two voltage-biased superconducting leads (S) by means of two tunnel junctions (S-I-N-I-S). A controlled single-electron current flows between the two superconductors by properly changing in time the gate potential of N. In principle, the Andreev reflection, i.e., the tunneling of two electrons from N to S can be ideally suppressed when the charging energy of N is larger than the energy gap of S. Actually, in real experiments, this two-particle tunneling process also contributes to the total current through the SET. We show that the exchange of photons between the S-I-N-I-S device and the high-temperature electromagnetic environment where it is embedded makes the Andreev reflection energetically possible. We discuss how this effect limits the single-electron tunneling accuracy needed for metrological applications. Next, we focus on the thermodynamical features of the superconductor-based tunnel junctions. We first consider the well-known electronic cooling capabilities of the S1-I-N-I-S1 and S2-I-S1-I-S2 double-junction devices, where S2 and S1 are superconductors with different energy gaps. Then, we study the design and operation of an electronic nanorefrigerator based on a combination of these two structures, i.e., a cascade cooler. We show numerically that a normal-metal island can be cooled down to about 100 mK starting from a bath temperature of 500 mK. We discuss the practical implementation, potential performance and limitations of such a device. Finally, we consider the dynamics of a quantum phase-slip junction (QPSJ) connected to a microwave source. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of the microwave frequency in the I-V characteristic. Their experimental observation has been elusive up to now. We argue that thermal and quantum fluctuations can smear the I-V curve considerably. To understand these effects, we determine the I-V characteristic of a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations is governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of the quantum current standard.
8

Etude par modélisation moléculaire de la thermodynamique des interfaces et des lignes de contact en milieu confiné / Molecular dynamics study of interface and contact line thermodynamics in confined environments

Bey, Romain 14 December 2018 (has links)
Dans cette thèse, nous utilisons des outils de simulation moléculaire pour caractériser les propriétés thermodynamiques de fluides confinés dans des matrices solides nanométriques. Alors qu'à l’échelle macroscopique, les énergies libres de fluides au contact de solides sont décrites par des pressions et des tensions de surface qui sont respectivement des énergies libres volumiques et surfaciques, à l’échelle moléculaire plusieurs paramètres additionnels doivent être considérés. Parmi eux, l'énergie libre de la ligne triple séparant trois phases, la tension de ligne. Les valeurs de la tension de ligne ainsi que les méthodologies permettant de la mesurer sont débattues.Les outils de simulation moléculaire permettent d'étudier théoriquement la thermodynamique des surfaces et des lignes. Plusieurs méthodologies statistiques peuvent être mises en œuvre pour extraire les tensions de surface et de ligne à partir d’une trajectoire moléculaire simulée. Nous nous intéressons en particulier à la méthodologie mécanique, qui consiste à mesurer les contraintes relatives à l’étalement quasi-statique d’un fluide sur un solide.Dans une première partie, nous étudions les expressions microscopiques des contraintes de mouillage à une interface solide-fluide plane. Dans le cas d’un solide latéralement homogène, l'application du théorème du viriel à un film liquide infini sans considération de la région séparant les surfaces mouillées et sèches permet de mesurer les forces relatives à l'extension du film sur un solide sec. Lorsque des hétérogénéités sont présentes à la surface du solide, cette méthodologie néglige des forces concentrées dans la région de la ligne triple. La comparaison de différentes méthodologies de mesure des tensions de surface indique que les termes ainsi négligés sont potentiellement importants dans le cas d'une forte rugosité.Dans une deuxième partie, nous nous concentrons sur des solides sans hétérogénéité tangentielle. Nous développons une méthodologie de mesure de l’énergie libre d’une interface fluide-fluide confinée et de sa tension de ligne qui s’appuie sur la considération des différentes contraintes fluides. Nous simulons des fluides de Van der Waals et de l’eau en équilibre liquide-vapeur, confinés dans des solides de différentes natures. Nous montrons que le concept de tension de ligne est robuste jusqu’à des confinements de quelques diamètres moléculaires. Les valeurs de tension de ligne mesurées sont cohérentes avec différentes approches théoriques, résolvant certains résultats paradoxaux de la littérature.Dans une troisième partie, nous appliquons la méthodologie mécanique à l’étude d’un mélange liquide-gaz confiné. Nous simulons des solvants et des solutés de Van der Waals ainsi que de l’eau avec du dioxyde de carbone. Différentes adsorptions sont observées, relatives aux surfaces mais également à la ligne triple. L’énergie libre de l’interface confinée s’en trouve fortement impactée. L'effet de l’adsorption sur la tension de ligne peut être modélisé par un équivalent linéique de l’équation d’adsorption de Gibbs surfacique. / In this thesis, we use molecular simulation tools to characterize the thermodynamic properties of fluids confined in nanometric solids. While at the macroscopic scale, the free energy of fluids in contact with a solid is described by pressures and surface tensions, respectively free energies per unit volume and per unit area, at the molecular scale, additional parameters are needed. One of them is the free energy per unit length of the triple line, the line tension. Its values and the methodologies used to measure it are controversial.The thermodynamics of interfaces and lines can be theoretically studied with molecular simulation tools. To extract the surface and line tensions from a simulated molecular trajectory, various statistical methodologies are available. In particular, we here use the mechanical methodology, which consists in measuring the stresses related to the quasistatic spreading of a fluid on a solid.In the first part, we study the microscopic expression of wetting stresses at a planar solid-fuid interface. When a laterally homogeneous solid is considered, the virial theorem applied to an infinite fluid film without consideration of the limit between wet and dry surfaces provides the forces related to the film extension on a dry solid. In the case of a laterally heterogeneous solid, this methodology neglects forces that are concentrated at the triple line. By comparing the surface tensions measured with different methodologies, we show that the neglected terms may induce important errors in the case of rough surfaces.In the second part, we focus on laterally homogeneous solids. We develop a methodology to measure the free energy and the line tension of a confined fluid-fluid interface using fluid mechanical stresses. We simulate Van der Waals fluids and water in liquid-vapor equilibrium confined in different solids. The concept of line tension appears robust down to confinements of a few molecular diameters, and its value consistent with various theoretical approaches, thus solving paradoxical results from the literature.In the last part, we apply the mechanical methodology to study the equilibrium of two fluid species in confinement, one liquid and the other gaseous. We simulate Van der Waals solvents and solutes, and water with carbon dioxide. Various adsorptions at the surfaces and the triple line are observed, strongly impacting the free energy of the confined liquid-gas interface. Finally the adsorption-induced variation of the line tension can be modelled by a unidimensional equivalent of the Gibbs isotherm.
9

Valley dynamics and excitonic properties in monolayer transition metal dichalcogenides / Dynamique d'indice de vallée dans l'espace réciproque et propriétés excitoniques dans les monocouches de dichalcogénures à métaux de transition

Bouet, Louis 09 October 2015 (has links)
La possibilité de créer des monocouches de dichalcogenures à métaux de transition (MoS2, WSe2,MoSe2 pour ceux étudiés dans ce manuscrit) a été démontrée récemment (2005) et a ouvert la voie à l’étude de ces matériaux sous leur forme 2D. Il apparaît depuis que les propriétés de ces semi-conducteurs sous leur forme monocouche offrent des perspectives intéressantes à la fois du point de vue de la physique fondamentale et des potentielles applications qui peuvent en découler ; en plus de bénéficier d’un fort couplage avec la lumière, l’existence d’un gap important (situé dans le visible, 1.7-1.8 eV) permet entre autres de réaliser des transistors d’épaisseur mono-atomique. Par ailleurs, la physique de ces matériaux est prometteuse pour les applications dans le domaine de l’optoélectronique. En effet, lorsque le matériau est affiné jusqu’à la monocouche atomique, son gap optique devient direct et la brisure de symétrie d’inversion associée au fort couplage spin-orbite provoque l’apparition de règles de sélection optique originales qui relient directement la polarisation de la lumière émise ou absorbée à une des deux vallées non-équivalentes de l’espace réciproque. Cela ouvre la possibilité d’explorer une nouvelle physique, basée sur l’indice de vallée et intitulée en conséquence vallée-tronique, avec comme perspectives futures la manipulation de l’indice de vallée et l’exploitation d’effetsliés à cette relation originale entre propriétés optiques et électroniques (effet vallée-Hall par exemple). Cemanuscrit de thèse regroupe une série d’expériences réalisées dans le but de comprendre et caractériser les propriétés optoélectroniques de ces matériaux. Un premier chapitre introductif présente le contexte scientifique de ces travaux de recherche et démontre l’origine des propriétés électroniques et optiques de ces matériaux via un modèle théorique simple. Le second chapitre présente en détails les échantillons étudiés ainsi que le dispositif expérimental utilisé lors des mesures. Enfin les chapitres 3 à 6 détaillent les expériences menées et les résultats obtenus ; le lecteur y trouvera des mesures de photoluminescence apportant la démonstration expérimentale des règles de sélection optique, l’identification des différents raies spectrales d’émission pour les différentstypes d’échantillons mentionnés plus haut ainsi que des mesures de photoluminescence résolues en temps permettant d’extraire la dynamique des propriétés des porteurs photo-générés. Une part importante de ce manuscrit est consacrée à l’étude expérimentale des propriétés excitoniques de ces matériaux dont la structure de bande électronique est finalement sondée via des études de magnéto-spectroscopie. / The possibility of isolating transition metal dichalcogenide monolayers by simple experimental means has been demonstrated in 2005, by the same technique used for graphene. This has sparked extremely diverse and active research by material scientists, physicists and chemists on these perfectly two-dimensional (2D) materials. Their physical properties inmonolayer formare appealing both fromthe point of view of fundamental science and for potential applications. Transition metal dichalcogenidemonolayers such asMoS2 have a direct optical bandgap in the visible and show strong absorption of the order of 10% per monolayer. For transistors based on single atomic layers, the presence of a gap allows to obtain high on/off ratios.In addition to potential applications in electronics and opto-electronics these 2D materials allow manipulating a new degree of freedom of electrons, in addition to the spin and the charge : Inversion symmetry breaking in addition to the strong spin-orbit coupling result in very original optical selection rules. The direct bandgap is situated at two non-equivalent valleys in k-space, K+ and K−. Using a specific laser polarization, carriers can be initialized either in the K+ or K− valley, allowing manipulating the valley index of the electronic states. This opens up an emerging research field termed "valleytronics". The present manuscript contains a set of experiments allowing understanding and characterizing the optoelectronic properties of these new materials. The first chapter is dedicated to the presentation of the scientific context. The original optical and electronic properties of monolayer transition metal dichalcogenides are demonstrated using a simple theoreticalmodel. The second chapter presents details of the samples and the experimental setup. Chapters 3 to 6 present details of the experiments carried out and the results obtained. We verify experimentally the optical selection rules. We identify the different emission peaks in the monolayer materials MoS2, WSe2 and MoSe2. In time resolved photoluminescence measurements we study the dynamics of photo-generated carriersand their polarization. An important part of this study is dedicated to experimental investigations of the properties of excitons, Coulomb bound electron-hole pairs. In the final experimental chapter, magneto-Photoluminescence allows us to probe the electronic band structure and to lift the valley degeneracy.
10

Etude du transport électronique dans les nanodispositifs semiconducteurs par microscopie à grille locale / Study of electron transport in semiconductor nanodevices by Scanning Gate Microscopy

Liu, Peng 30 September 2011 (has links)
La microscopie de grille à balayage (SGM pour Scanning GateMicroscopy), développée à la fin des années 1990, est devenue un outilpuissant pour étudier les propriétés électroniques locales dans lesnano-dispositifs semi-conducteurs. La SGM est basée sur la techniqueAFM, mais la pointe métallique est utilisée comme une grille mobilecouplée capacitivement au dispositif, et les propriétés de transportélectronique sont étudiées sous l'influence de cette grille,fournissant des informations spatiales à haute résolution. Cette thèsedécrit d'abord le remplacement de la détection optique de notresystème AFM par une détection piézo-électrique utilisant un diapason àquartz, puis les résultats de mesures SGM sur divers nano-dispositifs,qui sont tous fabriqués à partir d'hétérostructures InGaAs / InAlAscontenant un gaz d'électrons bi-dimensionnel (2DEG) de grande mobilitésitué à quelques dizaines de nanomètres sous la surface. Sur unesimple constriction, nous étudions l'interaction pointe-échantillonavec deux approches: la force électrostatique et l'effet capacitif.Sur une boite quantique, nous étudions les phénomènes de blocage deCoulomb lorsque la pointe est utilisée comme une grille pour modulerla charge à l'intérieur de la boite. Dans un travail sur le paradoxede Braess, avec l'aide de simulations numériques, nous découvrons uneffet paradoxal en modulant la largeur du canal central dans undispositif mésoscopique en forme de double anneau, en analogie avec leparadoxe qui se produit dans un réseau classique. Par une étudedétaillée de l'évolution de la conductance, nous découvrons enfinplusieurs pièges de charge dans les images SGM, et proposons un modèlepour interpréter le changement de conductance en présence de pièges decharge. Nous développons alors une méthode pour imager directement lespièges de charge par des mesures de transconductance avec unemodulation de la tension sur la pointe. / Scanning gate microscopy (SGM), developed in the late 1990's, has become a powerful tool to investigate the local electronic properties in semiconductor nano devices. SGM is based on the AFM technique but the metallic tip is used as a movable gate capacitively coupled to the device, and the electron transport property is studied on influence of this gate, providing spatial information with high resolution. This thesis presents the update of the force detection mode of our AFM system from optical method to force sensing by a quartz tuning fork, and the SGM measurement results on various nano devices, all of which are fabricated from InGaAs/InAlAs heterostructures containing a high mobility 2DEG located a few tens of nanometers below the surface. On a 2DEG constriction, we investigate the tip-sample interaction with two approaches: the capacitive force and the gate effect. On a quantum dot, we study the Coulomb blockade phenomena where the tip is used as a gate to modulate the charging/discharging inside the dot. In a work on Braess paradox, with the help of numerical simulations, we discover a Braess paradox effect by modulating a channel width in a ‘double-ring' shaped mesoscopic device in analogy with the one that occurs in a classical network. By a detailed study of the conductance changes, we discover several charge traps from the SGM map, and propose a model to interpret the conductance change with the presence of charge traps. We develop a method to directly image the charge traps by transconductance measurements with a voltage modulation on the tip.

Page generated in 0.0333 seconds