Spelling suggestions: "subject:"diatoms 1genetic engineering"" "subject:"diatoms cogenetic engineering""
1 |
The protein and peptide mediated syntheses of non-biologically-produced oxide materialsDickerson, Matthew B. 09 July 2007 (has links)
The research detailed in this dissertation is focused on the use of biomolecules (i.e., peptides and proteins) to form non-biologically produced materials under mild reaction conditions (i.e, neutral pH, aqueous solutions, and room temperature). The peptides utilized in the studies detailed in this dissertation were identified through the screening of single crystal rutile TiO2 substrates or Ge powder with a phage-displayed peptide library.
Twenty-one peptides were identified which possessed an affinity for Ge. Those peptides possessing a basic isoelectric point as well as hydroxyl- and imidazole-containing amino acid residues were found to be the most effective in precipitating amorphous germania from an alkoxide precursor.
The phage-displayed peptide library screening of TiO2 substrates yielded twenty peptides. The titania formation activity of these peptides was found to correlate with the number of positive charges they carried. The titania materials generated by the library-identified and designed peptides were found to be composed of amorphous titania as well as <10 nm anatase and/or monoclinic TiO2 crystallites.
Four recombinant proteins, derived from the amino acid sequences of proteins (silaffins) associated with biosilicification in diatoms, were also investigated for titania precipitation activity. The two most basic of these recombinant silaffins, rSil1L and rSilC, were able to induce the formation of titania. The titania precipitates generated by rSil1L were found to be similar to those produced by the phage-displayed library identified peptides. The second recombinant silaffin, rSilC, was found to produce hollow spheres of titania, which, following dehydration, were observed to transform into larger, solid spheres composed of radially aligned columns of rutile TiO2. The highly repetitive nature of the rSilC s amino acid sequence is believed to be responsible for the differences in TiO2 polymorph generated by the different recombinant silaffins and peptides.
This dissertation also details research conducted on the formation of titania utilizing rSilC conjugated to synthetic and biogenic silica surfaces. These silica surfaces were functionalized with a newly developed drendritic growth technique. The dendritic functional-group amplification process was demonstrated to increase the loading of hexahisitidine tagged proteins on silica surfaces by more than 40%, as compared to traditional immobilization procedures.
|
2 |
The protein and peptide mediated syntheses of non-biologically-produced oxide materialsDickerson, Matthew B. January 2007 (has links)
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Sandhage, Kenneth; Committee Co-Chair: Kröger, Nils; Committee Co-Chair: Naik, Rajesh; Committee Member: Hud, Nicholas; Committee Member: Marder, Seth.
|
3 |
Hydrothermal conversion of diatom frustules into barium titanate based replicasErnst, Eric Michael January 2007 (has links)
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Sandhage, Kenneth H.; Committee Co-Chair: Snyder, Robert L.; Committee Member: Sanders, Thomas H.
|
4 |
Hydrothermal conversion of diatom frustules into barium titanate based replicasErnst, Eric Michael 10 July 2007 (has links)
Numerous organisms produce ornately detailed inorganic structures (often known as shells) with features on length scales from the nanoscale to the microscale. One organism, commonly referred to as a diatom, originates from algae and is found throughout the oceans on Earth. These diatoms possess skeletal structures, frustules, made from silicon dioxide. This chemical makeup limits the number of possible applications for which these structures can be used.
Using a series of gas displacement reactions, these frustules can be converted to other useful materials, such as magnesium oxide and titanium dioxide, while maintaining the features of the frustule template. In the current research, silicon dioxide frustules were converted to titanium dioxide replicas using method previously devised by our group. The titanium dioxide replicas were subjected to a hydrothermal reaction by exposing the replicas to an aqueous basic solution containing barium hydroxide to form barium titanate and barium strontium titanate replicas. The effects of reaction temperature, time, and solution composition on extent of conversion were examined. The conventional method of converting titanium dioxide to barium titanate, using a convection heating oven, was compared with a microwave assisted heating method to study the advantages of using microwave heating over convection heating.
|
Page generated in 0.124 seconds