• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 12
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 40
  • 31
  • 18
  • 16
  • 15
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phase Behavior of Diblock Copolymer/Homopolymer Blends

Zhou, Jiajia 12 1900 (has links)
<p> Self-consistent field theory (SCFT) is a well established theoretical framework for describing the thermodynamics of block copolymer melts and blends. Combined with numerical methods, the SCFT can give useful and accurate predictions regarding the phase behavior of polymer blends. </p> <p> We have applied SCFT to study the phase behavior of blends composed of diblock copolymers (AB) and homopolymers (C). Two cases are studied in detail. In the first case the homopolymers have a repulsive interaction to the diblock copolymers. We found an interesting feature in the phase diagram that there exists a bump of the phase boundary line when A is the majority-component. In the second case, the homopolymers have an attractive interaction to one of the blocks of the diblock copolymers. A closed-loop of microphase separation region forms for strong interactions. For both cases, we have investigated the effects of homopolymer concentration, homopolymer chain length, and monomer-monomer interactions, on the phase behavior of the system. </p> <p> We also investigated micelle formation in polymer blends. Diblock copolymers (AB) blended with homopolymers (A) can self-assemble into lamellar, cylindrical and spherical micelles. The critical micelle concentrations for different geometries are determined using self-consistent field theory. The effect of varying copolymer block asymmetry, homopolymer molecular weight and monomer-monomer interactions on micelle morphology are examined. \\Then the blends are confined between two flat surfaces, the shape of the micelles may differ from that of the bulk micelles. We study the shape variation of a. spherical micelle under confinement and its dependence on the film thickness and surface selectivity. </p> / Thesis / Doctor of Philosophy (PhD)
12

Interactions of Well-Defined, Pyrene-Functionalized Diblock Copolymers with Single-Walled Carbon Nanotubes

Wang, Clair January 2003 (has links)
Since their discovery in 1991, carbon nanotubes, and especially single walled carbon nanotubes (SWNTs), have attracted significant attention due to their unique structural, mechanical, and electronic characteristics. Although many potential applications for carbon nanotubes have been suggested, several key obstacles currently preclude their practical commercial applications. One of these is their lack of solubility and processability. In order to address this issue, a number of covalent and non-covalent nanotube functionalization techniques have recently been reported in the literature. These methods allow for the manipulation of nanotube properties, such as their solubility, through the attachment of various chemical moieties. Although most of these methods involve covalent attachment of structures to either the ends or sidewalls of SWNTs, several examples of non- covalent functionalization have also been reported. Pyrene, with its flat and aromatic structure, has been shown to form strong pi-pi stacking interactions with the surface of SWNTs. With this in mind, we explored several methods towards SWNT solubilization with diblock copolymers through non-covalent polymer- nanotube interactions. Living free radical polymerizations (SFRP, ATRP) were employed to produce diblock copolymers with narrow polydispersity. Commercial and synthetic monomers with different functionalities could be utilized to produce polymers with varying properties. Specifically, we used polymers such as polystyrene, poly(methyl methacrylate), poly(t-butyl acrylate) and poly(acrylic acid) as one block of our diblock copolymers. The second block was composed of synthetic pyrene-functionalized monomers mixed with different amounts of monomers that match the composition of the first block. It was found that, upon mixing these diblock copolymers with insoluble nanotubes in various solvents, the nanotubes were partially solubilized through pi-pi stacking with the pyrene- containing blocks. / Thesis / Master of Science (MS)
13

The Copolymer blending method : a new approach for targeted assembly of micellar nanoparticles

Wright, D.B., Patterson, J.P., Pitto-Barry, Anaïs, Lu, A., Kirby, N., Gianneschi, N.C., Chassenieux, C., Colombani, O., O'Reilly, R.K. 31 August 2015 (has links)
Yes / Polymer self-assembly in solution is a simple strategy for the preparation of elegant yet complex nanomaterials. However, exhaustive synthesis of the copolymer synthons is often required to access specific assemblies. In this work we show that the blending of just two diblock copolymers with identical block lengths but varying hydrophobic monomer incorporations can be used to access a range of assemblies of intermediate hydrophobic composition. Indeed, the nanostructures produced from blending are identical to those formed with the directly synthesized copolymer of the same composition. This new approach presents researchers with a more efficient and accessible methodology to access precision self-assembled nanostructures, and we highlight its potential by applying it to a demonstrator catalytically active system. / European Science Foundation (ESF), Engineering and Physical Sciences Research Council (EPSRC), United States. Air Force. Office of Scientific Research (AFOSR)
14

Vers des métamatériaux thermoélectriques à base de super-réseaux verticaux : principes et verrous technologiques / Towards thermoelectric metamaterials based on vertical superlattices : fabrication and challenges

Parasuraman, Jayalakshmi 28 June 2013 (has links)
Les méta-matériaux offrent la possibilité d'obtenir des propriétés physiques nettement améliorées en comparaison avec celles des matériaux naturels. Dans ce travail, nous explorons une nouvelle variété de métamatériaux thermoélectriques à base de micro-et nano-structuration du silicium, sous la forme de super-réseaux verticaux, avec comme visée applicative la récupération d'énergie thermique ainsi que le refroidissement. En outre, nous focalisons nos efforts sur une méthodologie expérimentale permettant la réalisation de ces matériaux par des moyens simples et peu coûteux. La première partie de cette thèse sert d'introduction aux phénomènes thermiques qui constituent la base de la conduction électrique et de la dissipation de chaleur dans les nanostructures, respectivement par émission thermo-ionique et par la diffusion de phonons. Cette partie détaille également les principes et résultats de caractérisation thermique à l'aide des méthodes 3ω et 2ω. La deuxième partie de cette thèse décrit les approches de micro- nanostructuration descendante « top-down » et ascendante « bottom-up », en vue de la fabrication de super-réseaux nanométriques sur du silicium mono-cristallin. La nouvelle architecture verticale proposée soulève des défis technologiques qui sont traités à travers l'exploration de techniques expérimentales originales pour produire, d'une manière efficace et sur de grandes surfaces, des structures submicroniques à fort facteur de forme. Ces techniques comprennent l'utilisation de motifs résultant de lithographie traditionnelle combinée à l'extrusion pour en produire des structures volumiques. En outre, l'utilisation de nanofibres et de diblocs copolymères comme nano-motifs géométriques sont également présentés pour nous rapprocher davantage de l'objectif ultime du projet / Metamaterials offer the benefit of obtaining improved physical properties over natural materials. In this work, we explore a new variety of thermoelectric metamaterials based on silicon micro- and nano- structuration, in the form of vertical superlattices for use in energy-related applications. Additionally, we focus on a route towards fabricating these materials using simple and low-cost means compared to prior attempts. The first part of this thesis serves as an introduction to the thermal phenomena which form the basis for electrical conduction and heat dissipation by thermionic emission and phonon scattering at the nanoscale. These principles forms the crux of the device. This section also details the characterization principles and results using the 3ω and 2ω methods for thermal measurement. The second part of this thesis describes both top-down and bottom-up approaches towards fabricating nanoscale superlattices from single-crystalline silicon. The novel proposed vertical architecture raised technological challenges that were tackled through the exploration of original experimental techniques for producing high aspect ratio (HAR) structures in an effective manner and over large surface areas. These techniques include the use of traditional lithography patterning and subsequent extrusion of volumic structures. Additionally, the use of nanofibers and diblock copolymers as templates for further etching of HAR silicon nanostructures are also presented to bring us closer to the ultimate goal of the project
15

Block Copolymer-Templated Mesoporous Materials obtained by Evaporation-Induced Self Assembly

Lin, Yu-De 26 July 2011 (has links)
A series of immiscible crystalline-crystalline diblock copolymers, poly(ethylene oxide)-b-(£`-caprolactone) (PEO-b-PCL), were synthesized through ring-opening polymerization and then blended with phenolic resin. FT-IR analyses provide that the ether group of PEO is a stronger hydrogen bond acceptor than the carbonyl group of PCL with the hydroxyl group of phenolic. Phenolic after curing with hexamethylenetetramine (HMTA) results in the excluded and confined PCL phase based on differential scanning calorimeter (DSC) analyses. This effect leads to the formation of a variety of composition-dependent nanostructures, including disorder, gyroid and short cylinder. The self-organized mesoporous phenolic resin was only found at 40~60 wt% phenolic content by intriguing balance of the contents of phenolic, PEO, and PCL. In addition, the mesoporous structure was destroyed with the increasing the ratio of PCL to PEO in block copolymers by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses. In addition, the large and long-range order of bicontinuous gyroid-type mesoporous carbon was obtained from mesoporous gyroid phenolic resin calcined at 800 ¢XC under nitrogen.
16

The behavior of proteins at solid-liquid interfaces

Garland, Adam Till 07 July 2014 (has links)
The behavior of a protein molecule at the solid-liquid interface is a worthy scientific problem for at least three reasons. The main driving force for studying this problem is a practical one, as many areas of bio-related technologies, such as medical implants, biosensing, and drug delivery, require the understanding of protein-surface interactions. In this dissertation, the nature of the precursive weakly adsorbed state of proteins during binding is reviewed. From this perspective, the adsorption and binding of proteins to a solid block copolymer thin film was achieved with regular spacing. Further efforts produced a monolayer of green fluorescent protein (GFP) covalently bound with regular spacing and orientation to a diblock copolymer thin film. This protein could be folded and refolded by changing solvent characteristics. We also explored the binding of DC-SIGN to mannose and mannotriose bearing lipid membranes. While no binding was observed, the usefulness of the lipid-based glycan microarray was proven using the well-studied CTB-GM1 binding motif. / text
17

Fully conjugated diblock copolymers for photovoltaic devices

Mulherin, Rhiannon Clare January 2012 (has links)
No description available.
18

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
19

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
20

Prediction of the Active Layer Nanomorphology in Polymer Solar Cells Using Molecular Dynamics Simulation

Ashrafi Khajeh, Ali Reza Unknown Date
No description available.

Page generated in 0.0261 seconds