• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Sulfotyrosine Bearing Peptides and Analogues

Ali, Ahmed Magdy Ahmed Mohamed January 2010 (has links)
Sulfation of tyrosine residues is a post-translational modification that occurs on many secretory as well as transmembrane proteins. This modification is believed to be essential for numerous biological processes. However, one of the factors hindering the study of the significance of sulfotyrosine (sTyr) within a protein is the absence of a general method that enables the synthesis of sTyr peptides in satisfactory yields and purity. A general approach to the synthesis of sTyr-bearing peptides was developed in which the sTyr residue is incorporated into the peptides with the sulfate group protected. For the implementation of this general approach a new protecting group for sulfates, namely, the dichlorovinyl (DCV) group was developed. This was accomplished by conducting a careful analysis of the reaction of a trichloroethyl (TCE)-protected sulfate ester with piperidine and 2-methylpiperidine (2-MP). A unique sulfuryl imidazolium reagent, compound 2.22, was also developed that enabled the ready synthesis of DCV-protected sulfates. This reagent was used to prepare the amino acid building block FmocTyr(SO3DCV)OH (2.23). An alternative and more economical synthesis of FmocTyr(SO3DCV)OH (2.23) was also developed that did not require reagent 2.22. Fmoc-based solid phase peptide synthesis (SPPS) was used to incorporate 2.23 into peptides using 2-MP for Fmoc removal. After cleavage of the peptide from the support, the DCV group was removed by hydrogenolysis to give sTyr peptides in good yield and purity. Using this approach a variety of sTyr peptides were prepared including a tetrasulfated 20-mer corresponding to residues 14-33 in chemokine receptor D6 and a disulfated 35-mer corresponding to residues 8-42 of the N-terminus region of the chemokine receptor DARC and this is the largest multisulfated sTyr–bearing peptide made to date. It was also demonstrated that the incorporation of an important non-hydrolyzable sTyr analog, 4-(sulfonomethyl)phenylalanine (Smp), into peptides can be accomplished in good yield by protecting the sulfonate residue with a TCE group during SPPS. This approach was shown to be superior to the previously reported method where the sulfonate group is unprotected. Finally, a number of sulfotyrosine bearing peptides were synthesized and tested as protein tyrosine phosphatase-1B (PTP1B) inhibitors
2

Synthesis of Sulfotyrosine Bearing Peptides and Analogues

Ali, Ahmed Magdy Ahmed Mohamed January 2010 (has links)
Sulfation of tyrosine residues is a post-translational modification that occurs on many secretory as well as transmembrane proteins. This modification is believed to be essential for numerous biological processes. However, one of the factors hindering the study of the significance of sulfotyrosine (sTyr) within a protein is the absence of a general method that enables the synthesis of sTyr peptides in satisfactory yields and purity. A general approach to the synthesis of sTyr-bearing peptides was developed in which the sTyr residue is incorporated into the peptides with the sulfate group protected. For the implementation of this general approach a new protecting group for sulfates, namely, the dichlorovinyl (DCV) group was developed. This was accomplished by conducting a careful analysis of the reaction of a trichloroethyl (TCE)-protected sulfate ester with piperidine and 2-methylpiperidine (2-MP). A unique sulfuryl imidazolium reagent, compound 2.22, was also developed that enabled the ready synthesis of DCV-protected sulfates. This reagent was used to prepare the amino acid building block FmocTyr(SO3DCV)OH (2.23). An alternative and more economical synthesis of FmocTyr(SO3DCV)OH (2.23) was also developed that did not require reagent 2.22. Fmoc-based solid phase peptide synthesis (SPPS) was used to incorporate 2.23 into peptides using 2-MP for Fmoc removal. After cleavage of the peptide from the support, the DCV group was removed by hydrogenolysis to give sTyr peptides in good yield and purity. Using this approach a variety of sTyr peptides were prepared including a tetrasulfated 20-mer corresponding to residues 14-33 in chemokine receptor D6 and a disulfated 35-mer corresponding to residues 8-42 of the N-terminus region of the chemokine receptor DARC and this is the largest multisulfated sTyr–bearing peptide made to date. It was also demonstrated that the incorporation of an important non-hydrolyzable sTyr analog, 4-(sulfonomethyl)phenylalanine (Smp), into peptides can be accomplished in good yield by protecting the sulfonate residue with a TCE group during SPPS. This approach was shown to be superior to the previously reported method where the sulfonate group is unprotected. Finally, a number of sulfotyrosine bearing peptides were synthesized and tested as protein tyrosine phosphatase-1B (PTP1B) inhibitors
3

Modélisation de la toxicocinétique des isomères cis et trans de la perméthrine et de ses métabolites chez le rat et de leur métabolisme sur hépatocytes humains / Toxicokinetic modeling of cis and trans isomers of permethrin and their metabolites in rat and of their metabolism in human hepatocytes

Willemin, Marie-Émilie 21 November 2014 (has links)
Les pyréthrinoïdes sont des insecticides auxquels la population est quotidiennement exposée. Le composé parent est suspecté d’induire des perturbations neuronales et hormonales chez l’homme. Au sein de cette famille, la perméthrine (mélange d’isomère cis et trans) est le composé le plus utilisé dans le traitement des intérieurs de maison. Dans ce travail de thèse, nous proposons de développer un modèle PBPK pour la perméthrine et certains de ses métabolites urinaires, utilisés comme biomarqueurs d’exposition, et d’évaluer les interactions métaboliques des deux isomères. Trois étapes ont été suivies. Une méthode analytique par GC-MS/MS a été développée pour doser simultanément les composés dans les différentes matrices. Un modèle PBPK de la perméthrine chez le rat a été associé à un modèles PBPK réduit du DCCA et empirique du 4’-OH-PBA et du 3-PBA. Les paramètres toxicocinétiques de chaque composé ont été estimés dans un cadre Bayésien à partir d’expériences in vivo menées à la dose orale de 25 mg/kg de cis- ou trans-perméthrine chez le rat. Le modèle PBPK de la perméthrine a été vérifié sur des données de cinétique d’un mélange cis/trans. Le métabolisme hépatique de chaque composé a été quantifié chez l’homme sur des hépatocytes primaires dans des conditions optimales pour l’extrapolation in vitro-in vivo, en incubant les isomères séparément et en mélange. Ce travail de thèse souligne la possibilité d’établir un modèle PBPK générique pour les pyréthrinoïdes. L’absence d’interaction entre les isomères au niveau in vitro et lors de la vérification du modèle PBPK de la perméthrine pourrait simplifier la caractérisation de l’exposition à un mélange de pyréthrinoïdes. / Population is largely exposed to pyrethroids, an insecticide family. The parent compound is suspected to induce neuronal and hormonal modifications in humans. Among this family, permethrin, a mixture of isomers cis/trans, is mainly used in house tratments. In this PhD project, we developed a PBK model of permethrin and some urinary metabolites uses as biomarkers of exposure. The matabolic interactions between the two isomers were also evaluated. A three steps strategy was followed. An analytical method by GC-MS/MS was developed to measure these compounds simultaneously in the different matrices. A PBPK of permethrin in rat was associated to a reduced PBPK model of DCCA and a 2-compartment model of 4'-OH-PBA and 3-PBA. The toxicokinetics parameters of each compound were estimated in a Bayesian framework from in vivo experiments in rats orally dosed with 25 mg/kg of cis- or trans permethrin. The PBPK model of permethrin was validated on the kinetic data of a mixture of permethrin. The hepatic metabolism was quantified in humans in primary hepatocytes in optimal conditions for in vitro-in vivo extrapolation, by incubating the isomers separately and as a mixture. This work underlines that a general PBPK model for Type 2 pyrethroids can be considered for the parent compound The lack of interaction between isomers during in vitro experiments and the validation of the PBPK model of permethrin could simplify the characterization of the exposure to a mixture of pyrethroids.

Page generated in 0.044 seconds