• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 33
  • 14
  • 13
  • 12
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 211
  • 211
  • 24
  • 23
  • 21
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Evolutionary costs and benefits of a newly discovered symbiosis between the social amoeba Dictyostelium and bacteria

January 2012 (has links)
Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication, and recognition, as well as many kinds of symbioses. Here we show first that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated, which may account for the dichotomous nature of this farming symbiosis. We also observed farmer Dictyostelium discoideum clones carry bacteria that they do not use as food. We hypothesized that these bacteria may play a defensive role against other D. discoideum clones. In our second study, we investigated the impact of these bacteria-carrying farmers on non-farming D. discoideum clones. We found that the presence of farming clones reduces spore production in non-farmers. Furthermore, this effect increases with frequency of farming clones, demonstrating the vulnerability of non-farming clones to farmers though in this experiment we had not separated the effects of the farmer clone and the bacteria they carry. In our third study we exposed non-farmers to a filtered supernatant from the most common non-food carried bacterium, Burkholderia xenovorans . This supernatant is likely to carry whatever the bacteria are producing. We treated Dictyostelium clones at the beginning of the social stage and found that the supernatant enhanced spore production of farming clones and hurt spore production of non-farming clones. This study shows that the effects of the bacteria can be restricted to a filtered supernatant alone. This discovery of symbiosis of D. discoideum with bacteria, and its impact on social interactions among D. discoideum clones will provide a fertile ground for further experiments on the evolution of sociality.
162

Functional Analysis Of DdRpb4 And DdRpb7, Two Subunits Of Dictyostelium Discoideum RNA Polymerase II

Devi, Naorem Aruna 01 1900 (has links)
The process of eukaryotic transcription and its regulation has been an interesting area of research for decades. With more insights into the process of transcriptional regulation of genes, studies have revealed a transcriptional regulation at the level of RNA polymerase II in response to nutritional stress. Further studies in our laboratory and others’, using Saccharomyces cerevisiae as a model system, had shown that two subunits of core RNA polymerase II, RPB4 and RPB7 play a crucial role in response to nutritional starvation. Similarly, these proteins are also known to play important roles in stress response in higher eukaryotes. Additionally, altering levels of Rpb4 and Rpb7 can differentially affect starvation response in S. cerevisiae (Singh et al., 2007). Multiple tissue blot analyses had shown that both these subunits are differentially expressed in different human tissues more significantly in heart, kidney and brain (Khazak et al., 1995; Khazak et al., 1998; Schoen et al., 1997). These findings have led us to investigate in Dictyostelium discoideum, a cellular slime mold, the possible role of these subunits during starvation-induced development. D. discoideum cells exist as unicellular amoebae in soil. In this organism, growth and differentiation phases are distinctly separated, which is an advantage for investigating the functions of these subunits during growth and development. Cells respond to nutritional starvation by undergoing a series of morphological changes coordinated with transcriptional changes giving rise to a terminally differentiated structure referred to as fruiting body which has live spores suspended on top of stalk of dead cells. Though starvation-induced development is accompanied by differential expression of genes, few studies related to the transcription machinery, RNA polymerase II have been reported so far. Purification and presence of all three RNA polymerases from D. discoideum had been reported earlier but the details of their structures and regulation have not been explored in detail (Pong and Loomis, 1973; Renart et al., 1985). One interesting observation reported by Lam and colleagues (Lam et al., 1992) was that CTD of the largest subunit of RNA polymerase II, Rpb1, is highly conserved with 24 heptapeptide repeats and expression of RPB1 transcript was regulated during development. Thus, we carried out experiments to characterize Rpb4 and Rpb7, two subunits of D. discoideum RNA polymerase II to understand any role of these subunits during development. Identification of Rpb4 and Rpb7, two subunits of D. discoideum RNA polymerase II To identify the homologs of S. cerevisiae Rpb4 and Rpb7 in D. discoideum, we employed bioinformatics and genetic approaches. Firstly, we searched D. discoideum database for all protein sequences of S. cerevisiae RNA polymerase II subunits. We could obtain sequences homologous to all twelve subunits in D. discoideum. Among the 12 subunits of D. discoideum RNA polymerase II, we chose to characterize two subunits, DdRpb4 and DdRpb7. We cloned the open reading frames of these two genes from D. discoideum Ax2 cells and cloned them in yeast expression vectors for complementation studies. In S. cerevisiae, Rpb4 is a non-essential protein but rpb4∆ cells show abnormal phenotypes. Few phenotypes of rpb4∆ cells, such as temperature sensitivity, defective in response to nutritional starvation and defective in activated transcription, were employed to identify the D. discoideum homolog of ScRpb4 (Woychik and Young, 1989; Pillai et al., 2001: Pillai et al., 2003). We observed that DdRPB4 can rescue temperature sensitivity corroborated with its ability to activate transcription from HSE containing promoters and sporulation defects of Scrpb4Δ mutant to the wild type. However, DdRPB4 can rescue neither the defect in activated transcription of GAL10 and INO1 promoters nor the elongated morphology exhibited by Scrpb4Δ mutant. On the other hand, we observed that DdRPB7 can complement the lethality associated with ScRPB7 deletion and can partially rescue the phenotypes associated with Scrpb4∆ strain similar to ScRPB7 (Sharma and Sadhale, 1999; Singh et al., 2004). Taken together, we have identified D. discoideum Rpb4 and Rpb7 as bona fide homologs of S. cerevisiae Rpb4 and Rpb7, respectively. Analysis of Rpb4 and Rpb7 in D. discoideum Since yeast RNA polymerase II subunits, Rpb4 and Rpb7, play an important role in the regulation of genes responsive to starvation stress, we carried out experiments to characterize Rpb4 and Rpb7 during growth and starvation-induced development in D. discoideum. Temporal and spatial expression profiles show avaried but similar pattern of RPB4 and RPB7 transcripts during D. discoideum development. We observed similarity between ScRpb4 and DdRpb4 in its ability to interact with DdRpb7 and to localise in both nuclear and cytoplasmic compartments. Attempts to knock out or reduce the levels of DdRpb4 and DdRpb7 by homologous recombination and antisense approaches, respectively, failed. However, since altering levels of Rpb4 and Rpb7 in S. cerevisiae can affect different stress response pathways, we had used overexpression to alter the level of Rpb4 and analysed its effect on D. discoideum development. We overexpressed DdRpb4 as GFP fusion protein in Ax2 cells and observed that D. discoideum cells overexpressing DdRpb4 showed normal growth and development similar to the wild type protein. Interestingly, we observed that Ax2 cells overexpressing DdRpb4 have drastically reduced levels of the endogenous protein. Thus, we have identified a post-transcriptional control on the level of Rpb4 in D. discoideum. Role of S. cerevisiae Rpb4/Rpb7 subcomplex in stress In S. cerevisiae, Rpb4 and Rpb7 interact with each other and carry out important functions (Choder, 2003; Sampath and Sadhale, 2004). Employing the functional conservation of Rpb4 and Rpb7 across various model systems, we further investigated the role of the subcomplex in S. cerevisiae. Since Rpb7 is an essential gene, we have generated rpb7Δstrain in the presence of plasmids expressing Rpb7 or its homologs. We have generated a S. cerevisiae strain lacking both RPB4 and RPB7 and introduced Rpb4 and Rpb7 homologs from either D. discoideum or C. albicans. We analysed these strains under stresses such as high temperature and nutrient starvation. The results of these experiments have provided how the differences in Rpb4 and Rpb7 proteins and their ability to form a subcomplex could be reflected in differential stress responses. Besides the high functional conservation of these proteins, their interaction with other regulatory proteins might also be critical for a proper response to nutritional stress.
163

Regulation and role of catalases during development and oxidative stress in Dictyostelium discoideum /

Garcia, Maria Xenia U. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 201-225). Also available on the Internet.
164

Genes and pathways mediating the cytotoxicity of the anticancer drug Cisplatin in Dictyostelium discoideum /

Li, Guochun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 185-226). Also available on the Internet.
165

Regulation and role of catalases during development and oxidative stress in Dictyostelium discoideum

Garcia, Maria Xenia U. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 201-225). Also available on the Internet.
166

Genes and pathways mediating the cytotoxicity of the anticancer drug Cisplatin in Dictyostelium discoideum

Li, Guochun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 185-226). Also available on the Internet.
167

Defining the function of the Chediak-Higashi syndrome related protein, LvsB, in Dictyostelium discoideum : functional interactions that antagonize vesicle fusion

Falkenstein, Kristin Nicole 07 October 2013 (has links)
Lesions in the human Lyst gene are associated with the lysosomal disorder Chediak Higashi Syndrome. The absence of Lyst causes the formation of enlarged lysosome related compartments in all cells. This defect results in severe immunodeficiency, neurological dysfunction, and ultimately in death. Despite decades of research, the mechanism for how these enlarged compartments arise is not well established. Two opposing models have been proposed for Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, while the fusion model identifies Lyst as a negative regulator of fusion between lysosomes. To date, a consensus on which model is correct has not been reached. This thesis details my investigation of Lyst function using Dictyostelium discoideum. To establish a definitive model for the function of the Dictyostelium Lyst ortholog, LvsB, we used assays that distinguish between defects in vesicle fusion versus fission. We compared the phenotype of cells defective in LvsB with that of two known fission defect mutants ([mu]3 and WASH null mutants). The temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and fusion dynamics of LvsB null cells are distinct from those of both fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. This work also presents evidence that LvsB antagonizes the function of two fusion regulatory proteins, Rab14 and dLIP5. The Dictyostelium Rab14 GTPase is known to stimulate lysosome fusion, and here we implicate dLIP5 as a promoter of Rab14 activity. Constitutive activation of Rab14 increases vesicle fusion in wild type cells but not in dLIP5 mutant cells. Thus, Rab14 activity is dependent on dLIP5. Additionally, the aberrant vesicle morphology and fusion phenotypes of LvsB mutant cells are suppressed by expression of dominant inactive Rab14 or disruption of dLIP5. This suppression suggests that LvsB antagonizes Rab14 activity to negatively regulate vesicle fusion. These studies validate the fusion model for LvsB function and provide new insights into the relationships that dictate vesicle fusion regulation. By extension, we propose that Lyst negatively regulates vesicle fusion by antagonizing the activity of a RabGTPase. / text
168

Molecular genetic analysis of nucleotide excision repair genes in Dictyostelium discoideum /

Lee, Sungkeun, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 124-125). Also available on the Internet.
169

Molecular genetic analysis of nucleotide excision repair genes in Dictyostelium discoideum

Lee, Sungkeun, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 124-125). Also available on the Internet.
170

Assembly and function of the PsB multiprotein complex during spore differentiation in Dictyostelium discoideum /

McGuire, Vincent Michael, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 129-157). Also available on the Internet.

Page generated in 0.0635 seconds