• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rpb4 = uma subunidade não muito convencional da RNA polimerase II - estudos em cana-de-açúcar / Rpb4 : a non conventional RNA polimerase II subunit - sugarcane studies

Dias, Fábio Ometto 18 August 2018 (has links)
Orientadores: Marcelo Menossi Teixeira, Agustine Gentile / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-18T02:51:01Z (GMT). No. of bitstreams: 1 Dias_FabioOmetto_M.pdf: 10515001 bytes, checksum: 45aee75247b1cfb2cf161e57b8dcf10c (MD5) Previous issue date: 2011 / Resumo: A transcrição é um evento crucial para a expressão gênica, sendo que a RNA polimerase II tem um papel destacado: são suas subunidades que interagem entre si e com os fatores de transcrição (TFs), formando um complexo que sintetiza o transcrito primário a partir da molécula de DNA. Entender como as subunidades funcionam e interagem entre si e com os TFs é um ponto fundamental para entender as bases da expressão gênica. Uma subunidade intrigante é a quarta maior subunidade, Rpb4, que juntamente com a Rpb7, a sétima maior subunidade, forma um heterodímero localizado em uma região à parte do core enzimático. Em situações de crescimento, Rpb4 encontra-se pouco associada com Rpb7. Porém, em situações de estresse a ligação das subunidades é de suma importância para a viabilidade celular. Esta tese faz a primeira caracterização do gene ScRpb4 de cana-de-açúcar, que codifica uma proteína homóloga à proteína correspondente à quarta maior subunidade da RNA Pol II de plantas. A proteína ScRpb4 foi expressa em Eschericchia coli e os resultados indicam que os maiores níveis foram observados com a construção baseada em pET-28a à 37 °C, induzidas por 4 horas com IPTG. A expressão do gene ScRpb4 foi uniforme em diferentes tecidos e condições, possuindo um ligeiro aumento da expressão na folha imatura, gema lateral, raiz e flor. Na hibridização in situ verificou-se que os transcritos foram encontrados na zona periférica do sistema vascular de folhas e no meristema apical das inflorescências, mostrando que ScRpb4 e expresso em tecidos imaturos com ativa divisão celular. A localização subcelular revelou que ScRpb4 está presente tanto no núcleo quanto no citoplasma, fato similar ao previamente reportado em leveduras. Todos os resultados encontrados estão de acordo com o provável papel de Rpb4 como parte da maquinaria transcricional, e trazem novos dados para essa subunidade em plantas / Abstract: Transcription is a crucial event for gene expression, whereas RNA Polymerase II plays an important role: its subunits interacts with each other and with the transcription factors (TFs) form a complex that synthesizes the primary transcript from the DNA molecule. Understanding how the subunits work and interact among themselves and with the TFs is a key point to understand the basis of gene expression. An interesting subunit is the fourth largest subunit, Rpb4, which together with Rpb7, the seventh largest subunit, forms a heterodimer located away from the enzymatic core. In yeast, in situations of optimal conditions, Rpb4 is often associated with Rpb7, but in non­optimal conditions, the association of the subunits is critical for cell viability. Our work does the first characterization of the ScRpb4 gene from sugarcane, which encodes a homologous protein to the proteins corresponding to the fourth largest subunit of the RNA Polymerase II from plants. The ScRpb4 protein was expressed in Eschericchia coli and results indicate that the highest levels of expression was observed with the construction based on pET-28a at 37 °C, induced with IPfG for 4 hours. ScRpb4 gene expression was uniform in different tissues and conditions, with a slightly higher expression in immature leaf, lateral bud, root and flowers. In situ hybridization showed that the ScRpb4 transcripts were found at the periphery of the vascular system in leaves and in the apical meristem of inflorescence, showing that ScRpb4 is expressed in immature tissues with active cell division. The subcellular localization revealed that ScRpb4 functions in nucleus and cytoplasm, similarly to previous reports found in yeast. All the results found are in agreement with the alleged role of the ScRpb4 as a part of the transcriptional machine and provide new data of this subunit in plants / Mestrado / Genetica Vegetal e Melhoramento / Mestre em Genética e Biologia Molecular
2

Elucidation Of Differential Role Of A Subunit Of RNA Polymerase II, Rpb4 In General And Stress Responsive Transcription In Saccharomyces Cerevisiae

Gaur, Jiyoti Verma 02 1900 (has links)
RNA polymerase II (Pol II) is the enzyme responsible for the synthesis of all mRNAs in eukaryotic cells. As the central component of the eukaryotic transcription machinery, Pol II is the final target of regulatory pathways. While the role for different Pol II associated proteins, co-activators and general transcription factors (GTFs) in regulation of transcription in response to different stimuli is well studied, a similar role for some subunits of the core Pol II is only now being recognized. The studies reported in this thesis address the role of the fourth largest subunit of Pol II, Rpb4, in transcription and stress response using Saccharomyces cerevisiae as the model system. Rpb4 is closely associated with another smaller subunit, Rpb7 and forms a dissociable complex (Edwards et al., 1991). The rpb4 null mutant is viable but is unable to survive at extreme temperatures (>34ºC and <12ºC) (Woychik and Young, 1989). This mutant has also been shown to be defective in activated transcription and unable to respond properly in several stress conditions (Pillai et al., 2001; Sampath and Sadhale, 2005). In spite of wealth of available information, the exact role of Rpb4 remains poorly understood. In the present work, we have used genetic, molecular and biochemical approaches to understand the role of Rpb4 as described in four different parts below: i) Studies on Genetic and Functional Interactions of Rpb4 with SAGA/TFIID Complex to Confer Promoter- Specific Transcriptional Control To carry out transcription, Pol II has to depend on several general transcription factors, mediators, activators, and co-activators and chromatin remodeling complexes. In the present study, we tried to understand the genetic and functional relationship of Rpb4 with some of the components of transcription machinery, which will provide some insight into the role of Rpb4 during transcription. Our microarray analysis of rpb4∆ strain suggests that down regulated genes show significant overlap with genes regulated by the SAGA complex, a complex functionally related to TFIID and involved in regulation of the stress dependent genes. The analysis of combination of double deletion mutants of either the SAGA complex subunits or the TFIID complex with rpb4∆ showed that both these double mutants are extremely slow growing and show synthetic growth phenotype. Further studies, including microarray analysis of these double mutants and ChIP (chromatin immunoprecipitation) of Rpb4 and SAGA complex, suggested that Rpb4 functions together with SAGA complex to regulate the expression of stress dependent genes. ii) Study of Genome Wide Recruitment of Rpb4 and Evidence for its Role in Transcription Elongation Biochemical studies have shown that Rpb4 associates sub-stoichiometrically with the core RNA polymerase during log phase but whether recruitment of Rpb4 is promoter context dependent or occurs only at specific stage of transcription remains largely unknown. Having discovered that Rpb4 can recruit on both TFIID and SAGA dominated promoters, it was important to study the genome wide role of Rpb4. Using ChIP on chip experiments, we have carried out a systematic assessment of genome wide binding of Rpb4 as compared to the core Pol II subunit, Rpb3. Our analysis showed that Rpb4 is recruited on coding regions of most transcriptionally active genes similar to the core Pol II subunit Rpb3 albeit to a lesser extent. This extent of Rpb4 recruitment increased on the coding regions of long genes pointing towards a role of Rpb4 in transcription elongation of long genes. Further studies showing transcription defect of long and GC rich genes, 6-azauracil sensitivity and defective PUR5 gene expression in rpb4∆ mutant supported the in vivo evidence of the role of Rpb4 in transcription elongation. iii) Genome Wide Expression Profiling and RNA Polymerase II Recruitment in rpb4∆ Mutant in Non-Stress and Stress Conditions Structural studies have suggested a role of Rpb4/Rpb7 sub-complex in recruitment of different factors involved in transcription (Armache et al., 2003; Bushnell and Kornberg, 2003). Though only few studies have supported this aspect of Rpb4/Rpb7 sub-complex, more research needs to be directed to explore this role of Rpb4/Rpb7 sub-complex. To study if Rpb4 has any role in recruitment of Pol II under different growth conditions, we have studied genome wide recruitment of Pol II in the presence and absence of Rpb4 during growth in normal rich medium as well as under stress conditions like heat shock and stationary phase where Rpb4 is shown to be indispensable for survival. Our analysis showed that absence of Rpb4 results in overall reduced recruitment of Pol II in moderate condition but this reduction was more pronounced during heat shock condition. During stationary phase where overall recruitment of Pol II also goes down in wild type cells, absence of Rpb4 did not lead to further decrease in overall recruitment. Interestingly, increased expression levels of many genes in the absence of Rpb4 did not show concomitant increase in the recruitment of Pol II, suggesting that Rpb4 might regulate these genes at a post-transcriptional step. iv) Role of Rpb4 in Pseudohyphal Growth The budding yeast S. cerevisiae can initiate distinct developmental programs depending on the presence of various nutrients. In response to nitrogen starvation, diploid yeast undergoes a dimorphic transition to filamentous pseudohyphal growth, which is regulated through cAMP-PKA and MAP kinase pathways. Previous work from our group has shown that rpb4∆ strain shows predisposed pseudohyphal morphology (Pillai et al., 2003), but how Rpb4 regulates this differentiation program is yet to be established. In the present study, we found that disruption of Rpb4 leads to enhanced pseudohyphal growth, which is independent of nutritional status. We observed that the rpb4∆/ rpb4∆ cells exhibit pseudohyphae even in the absence of a functional MAP kinase and cAMP-PKA pathways. Genome wide expression profile showed that several downstream genes of RAM signaling pathway were down regulated in rpb4∆ cells. Our detailed genetic analysis further supported the hypothesis that down regulation of RAM pathway might be leading to the pseudohyphal morphogenesis in rpb4∆ cells.
3

Functional Analysis Of DdRpb4 And DdRpb7, Two Subunits Of Dictyostelium Discoideum RNA Polymerase II

Devi, Naorem Aruna 01 1900 (has links)
The process of eukaryotic transcription and its regulation has been an interesting area of research for decades. With more insights into the process of transcriptional regulation of genes, studies have revealed a transcriptional regulation at the level of RNA polymerase II in response to nutritional stress. Further studies in our laboratory and others’, using Saccharomyces cerevisiae as a model system, had shown that two subunits of core RNA polymerase II, RPB4 and RPB7 play a crucial role in response to nutritional starvation. Similarly, these proteins are also known to play important roles in stress response in higher eukaryotes. Additionally, altering levels of Rpb4 and Rpb7 can differentially affect starvation response in S. cerevisiae (Singh et al., 2007). Multiple tissue blot analyses had shown that both these subunits are differentially expressed in different human tissues more significantly in heart, kidney and brain (Khazak et al., 1995; Khazak et al., 1998; Schoen et al., 1997). These findings have led us to investigate in Dictyostelium discoideum, a cellular slime mold, the possible role of these subunits during starvation-induced development. D. discoideum cells exist as unicellular amoebae in soil. In this organism, growth and differentiation phases are distinctly separated, which is an advantage for investigating the functions of these subunits during growth and development. Cells respond to nutritional starvation by undergoing a series of morphological changes coordinated with transcriptional changes giving rise to a terminally differentiated structure referred to as fruiting body which has live spores suspended on top of stalk of dead cells. Though starvation-induced development is accompanied by differential expression of genes, few studies related to the transcription machinery, RNA polymerase II have been reported so far. Purification and presence of all three RNA polymerases from D. discoideum had been reported earlier but the details of their structures and regulation have not been explored in detail (Pong and Loomis, 1973; Renart et al., 1985). One interesting observation reported by Lam and colleagues (Lam et al., 1992) was that CTD of the largest subunit of RNA polymerase II, Rpb1, is highly conserved with 24 heptapeptide repeats and expression of RPB1 transcript was regulated during development. Thus, we carried out experiments to characterize Rpb4 and Rpb7, two subunits of D. discoideum RNA polymerase II to understand any role of these subunits during development. Identification of Rpb4 and Rpb7, two subunits of D. discoideum RNA polymerase II To identify the homologs of S. cerevisiae Rpb4 and Rpb7 in D. discoideum, we employed bioinformatics and genetic approaches. Firstly, we searched D. discoideum database for all protein sequences of S. cerevisiae RNA polymerase II subunits. We could obtain sequences homologous to all twelve subunits in D. discoideum. Among the 12 subunits of D. discoideum RNA polymerase II, we chose to characterize two subunits, DdRpb4 and DdRpb7. We cloned the open reading frames of these two genes from D. discoideum Ax2 cells and cloned them in yeast expression vectors for complementation studies. In S. cerevisiae, Rpb4 is a non-essential protein but rpb4∆ cells show abnormal phenotypes. Few phenotypes of rpb4∆ cells, such as temperature sensitivity, defective in response to nutritional starvation and defective in activated transcription, were employed to identify the D. discoideum homolog of ScRpb4 (Woychik and Young, 1989; Pillai et al., 2001: Pillai et al., 2003). We observed that DdRPB4 can rescue temperature sensitivity corroborated with its ability to activate transcription from HSE containing promoters and sporulation defects of Scrpb4Δ mutant to the wild type. However, DdRPB4 can rescue neither the defect in activated transcription of GAL10 and INO1 promoters nor the elongated morphology exhibited by Scrpb4Δ mutant. On the other hand, we observed that DdRPB7 can complement the lethality associated with ScRPB7 deletion and can partially rescue the phenotypes associated with Scrpb4∆ strain similar to ScRPB7 (Sharma and Sadhale, 1999; Singh et al., 2004). Taken together, we have identified D. discoideum Rpb4 and Rpb7 as bona fide homologs of S. cerevisiae Rpb4 and Rpb7, respectively. Analysis of Rpb4 and Rpb7 in D. discoideum Since yeast RNA polymerase II subunits, Rpb4 and Rpb7, play an important role in the regulation of genes responsive to starvation stress, we carried out experiments to characterize Rpb4 and Rpb7 during growth and starvation-induced development in D. discoideum. Temporal and spatial expression profiles show avaried but similar pattern of RPB4 and RPB7 transcripts during D. discoideum development. We observed similarity between ScRpb4 and DdRpb4 in its ability to interact with DdRpb7 and to localise in both nuclear and cytoplasmic compartments. Attempts to knock out or reduce the levels of DdRpb4 and DdRpb7 by homologous recombination and antisense approaches, respectively, failed. However, since altering levels of Rpb4 and Rpb7 in S. cerevisiae can affect different stress response pathways, we had used overexpression to alter the level of Rpb4 and analysed its effect on D. discoideum development. We overexpressed DdRpb4 as GFP fusion protein in Ax2 cells and observed that D. discoideum cells overexpressing DdRpb4 showed normal growth and development similar to the wild type protein. Interestingly, we observed that Ax2 cells overexpressing DdRpb4 have drastically reduced levels of the endogenous protein. Thus, we have identified a post-transcriptional control on the level of Rpb4 in D. discoideum. Role of S. cerevisiae Rpb4/Rpb7 subcomplex in stress In S. cerevisiae, Rpb4 and Rpb7 interact with each other and carry out important functions (Choder, 2003; Sampath and Sadhale, 2004). Employing the functional conservation of Rpb4 and Rpb7 across various model systems, we further investigated the role of the subcomplex in S. cerevisiae. Since Rpb7 is an essential gene, we have generated rpb7Δstrain in the presence of plasmids expressing Rpb7 or its homologs. We have generated a S. cerevisiae strain lacking both RPB4 and RPB7 and introduced Rpb4 and Rpb7 homologs from either D. discoideum or C. albicans. We analysed these strains under stresses such as high temperature and nutrient starvation. The results of these experiments have provided how the differences in Rpb4 and Rpb7 proteins and their ability to form a subcomplex could be reflected in differential stress responses. Besides the high functional conservation of these proteins, their interaction with other regulatory proteins might also be critical for a proper response to nutritional stress.
4

Studies On Saccharomyces Cerevisiae RNA Polymerase II Subunit Rpb7 And Its Eukaryotic Orthologs

Singh, Rajkumar Sunanda 10 1900 (has links)
Saccharomyces cerevisiae is an excellent experimental model organism to study various biological processes owing to its versatile genetics, biochemistry, and standard laboratory conditions. S. cerevisiae shows distinct biological responses under nutritional starvation conditions. S. cerevisiae undergoes dimorphic transition from a unicellular yeast form to a multicellular pseudohyphae (Gimeno et al., 1992) under nitrogen starvation, but in the complete absence of a fermentable carbon source, it undergoes gametogenesis called sporulation (Mitchell, 1994). While the signal transduction cascades and regulatory controls under nutritional starvation conditions are studied to great extent, the role of S. cerevisiae core RNA polymerase II (pol II) is not much understood. S. cerevisiae core RNA pol II consists of 12 subunits (Woychik and Hampsey, 2002), which is organized into a ten-subunit core and the Rpb4/7 subcomplex (Edwards et al., 1991). Rpb4/7 subcomplex is known to play important roles in stress survival (Choder 2004; Sampath and Sadhale, 2005.). S. cerevisiae rpb4 null diploid strains show reduced sporulation levels but exhibits a predisposition to pseudohyphal morphology (Pillai et al., 2003). Overexpression of Rpb7 partially rescues some of these defects (Sharma et al., 1999; Sheffer et al., 2001). Rpb7 is a highly conserved protein but Rpb4 is the least conserved amongst all RNA pol II subunits at the sequence level. Rpb4 and Rpb7 also affect different cellular functions, which are not directly dependent on each other. (a) Relative levels of RNA pol II subunits Rpb4 and Rpb7 differentially affect starvation response in Saccharomyces cerevisiae S. cerevisiae rpb4 null diploid strains show reduced sporulation levels as compared to wild type but exhibits pseudohyphal predisposition. Overexpression of RPB7 partially rescues the sporulation defect but results in an exaggeration of the pseudohyphae phenotype. We generated S. cerevisiae strains expressing different levels of Rpb4 and Rpb7 proteins in the same strains and analyzed their effect on sporulation and pseudohyphal morphology. We observed that sporulation is dependent on Rpb4 because sporulation level gradually increases with an increase in the Rpb4 protein level in the strain. Rpb7 reduces sporulation level but enhances pseudohyphal exaggeration in a dose-dependent manner. Rpb4 is dominant over Rpb7 in both the starvation responses because strain expressing an equimolar ratio of Rpb4 and Rpb7 protein exhibits RPB4+ phenotypes. (b) Domainal organization of Saccharomyces cerevisiae Rpb7 orthologs reflects functional conservation Rpb7 orthologs are known in eukaryotes and archaebacteria. The primary structure of Rpb7 is conserved. We chose Rpb7 orthologs from Candida albicans, Schizosaccharomyces pombe and Homo sapiens sapiens to investigate whether Rpb7 orthologs are also functionally conserved. We observed that all the orthologs tested are functionally conserved because they can complement the absence of RPB7 in S. cerevisiae. However, we uncovered functional differences amongst Rpb7 orthologs with respect to its function in rpb4 null strain and ess1 ts strain. Furthermore, we made N and C-terminal chimeric RPB7 constructs from these orthologs with S. cerevisiae Rpb7. These chimeras also can replace ScRpb7 in S. cerevisiae. However, functional differences were observed with each chimera pair in rpb4 null strain and ess1 ts strain, showing that the N and C-terminal domains of Rpb7 protein can be genetically dissected. The genetic observation on the domainal organization of Rpb7 orthologs is strengthened by the crystal structure of Rpb7 (Armache et al., 2005), which shows that Rpb7 is structurally organized into an N terminal RNP domain and a C terminal OB fold domain. (c) The Rpb7 subunit of Candida albicans RNA polymerase II induces lectin-mediated flocculation in Saccharomyces cerevisiae The Rpb7 ortholog of C. albicans is a conserved functional ortholog of ScRpb7. We observed that CaRpb7 induces Ca2+-dependent flocculation and agar-invasive growth in S. cerevisiae. CaRpb7 overexpression induces very high transcript levels of FLO1 and FLO11. We believe that the observed flocculation and agar-invasive phenotypes are due to Flo1 and Flo11 respectively, because Flo1 and Flo11 contribute mainly to cell-cell adhesion while Flo11 contributes mainly to cell-substrate adhesion (Verstrepen and Klis, 2006; Lo et al., 1998; Guo et al., 2000). Pathway analysis revealed that CaRpb7-induced flocculation is dependent on Mss11 transcriptional activator. Two-hybrid analysis revealed that CaRpb7 does not physically interact with transcriptional repressors known to repress FLO gene transcription, however genetic analysis revealed that CaRpb7 is epistatic to the repressor Sfl1. Rpb7 orthologs possess conserved domains with potential RNA binding ability (Orlicky et al., 1999) and ScRpb7 is known to play in mRNA stability (Lotan et al., 2007). The possibility of CaRpb7 specifically affecting the stability of FLO gene transcripts is being pursued.
5

Transcriptional Regulation And The Role Of Galactose Metabolism In The Virulence Of Candida Albicans

Singh, Vijender 03 1900 (has links)
Candida albicans, a commensal of gastrointestinal and uro-vaginal tract can cause superficial as well as life threatening disseminated infections under conditions of lowered immunity of the host such as HIV infection, drug induced immune suppression [given during organ transplantation to prevent rejection] and radiation therapy [head and neck cancer patients] (Odds, 1988; Fidel and Sobel, 1996). Candida albicans shows a range of morphologies, it can switch from budding yeast morphology to pseudohyphae (chains of elongated cells with visible constrictions at the sites of septa) and hyphae (linear filaments without visible constrictions at the septa) (Mitchell, 1998). The various factors that contribute to its virulence include its ability to undergo yeast to hyphal transition, formation of biofilms, adhesion and secretion of aspartyl proteinases. Hyphae are considered to be involved in invasive growth as they are frequently identified in infected tissues and strains defective in morphological transition (yeast to hyphal) are avirulent (Leberer et al., 1996; Lo et al., 1997; Stoldt et al., 1997). Morphological switching is not only necessary for successful establishment of infection but important for evading components host defense system like macrophages or dendritic cells. A network of signaling pathways that operate in C. albicans continuously assess the nutrient availability, cell density and other environmental conditions. The integrated output of these pathways determine the response of C. albicans under given set of environmental/media conditions and eventually determines the gene expression and morphogenic transition (Liu., 2001). C. albicans utilizes at least two major signaling pathways besides others for regulating the morphological transition. One of these two pathways uses Cph1 as transcription factor and is the homolog of Ste12 in S. cerevisiae which is shown to be involved in Pseudohyphal growth and mating. The other pathway includes Efg1 (homolog of Phd1 in S. cerevisiae) as transcription factor. Biofilm formation by Candida species is an important virulence factor and has gained considerable interest recently as these specialized survival structures are found in implanted devices such as indwelling catheters and prosthetic heart valves (Hawser and Douglas, 1994; Douglas, 2003). These biofilms lead to the failure of implants besides providing multiple drug resistance (Baillie and Douglas, 1999). A better understanding of the C. albicans interaction with the host at the site of infection and with the components of immune system will help in identifying new potential drug targets. (a) Genome wide expression profile of Candida albicans from patient samples and characterization of CaRPB4/7: To get a better insight in C. albicans response at the site of infection we were interested in mapping the expression profile of Candida albicans in active state of human infections. Patients suffering from head and neck cancer undergoing radiation therapy have high risk of C. albicans infection. We identified five such patients with heavy oral thrush infections and C. albicans samples were collected from them. Candida albicans was confirmed in these samples by various microbiological tests following which the samples were used for RNA isolation. The whole genome expression analysis leads to the identification of 188 up regulated and 88 down regulated genes in patient samples. Our data analysis revealed that Protein Kinase A pathway and many downstream genes of the same were differentially expressed. Analysis of saliva (saliva is known for antifungal and antibacterial activity) from these patients showed that unlike healthy individuals, the patient saliva favours yeast to hyphal transition of C. albicans cells. This might be a reason for high risk of infection. A major class of upregulated genes is found to be functionally involved in transcription which includes some RNA polymeraseII and III subunits. CaRPB4, the forth largest subunit of RNA polymeraseII, was found to be upregulated in patient samples. RPB4 has been shown to form sub complex with RPB7, the seventh largest subunit of RNA polymeraseII, and both subunits are known to play a role in a variety of stress conditions and pseudohyphal development in Saccharomyces cerevisiae. We characterized the CaRPB4 and CaRPB7 (homolog in Candida albicans) for their ability to complement their S. cerevisiae counterparts. CaRPB4 and CaRPB7 were able to complement majority of the phenotypes associated with these subunits in S. cerevisiae. Overexpression of CaRPB7 in S. cerevisiae enhances pseudohyphal growth. Considering the high degree of conservation of signaling pathways between S. cerevisiae and C. albicans it can be speculated that CaRPB7 might be involved in pseudohyphal development in C. albicans. We found that over expression of CaRPB4 in Candida albicans shows enhanced agar invasive growth which can be thought analogous to tissue invasion in host and hence might contribute for establishment of infection. This suggests that both the RNA polII subunits have a role to play in the virulence of C. albicans. (b) Characterization of UDP-Galactose 4-Epimerase (GAL10) from Candida albicans and their role in virulence. Enzyme UDP-Galactose-4-Epimerase [GAL10] is responsible for conversion of UDP-galactose to UDP-glucose which then gets metabolized by the cells through glycolysis and TCA cycle. The enzyme catalyzes a reversible reaction and can convert glucose to galactose in the absence of galactose as shown in Trypanosoma brucei and also involved in its virulence. In this study, we have identified the functional homolog of GAL10 in Candida albicans. S. cerevisiae and C. albicans GAL10 homologs are similar in their domainal organization as the proteins have a mutarotase and an epimerase domain. The former is responsible for conversion of ゚-D-galactose to a-D-galactose and the latter for epimerization of UDP-galactose to UDP-glucose. The synteny of galactose metabolizing structural genes is conserved among some fungi. To study the importance of CaGAL10 we generated deletion mutant of the gene in C. albicans. Our studies show that CaGAL10 [C. albicans GAL10] is involved in cell wall organization and in oxidative stress response. The mutant strain of GAL10 is hyperfilamentous in Lee’s and spider medium and the biofilm formed is morphologically different from the wild type strain. These set of results suggests that CaGAL10 plays an important role in organization/integrity of cell wall in C. albicans and speculate that it might be involved in virulence. (c) Study of Candida albicans-macrophage interaction and identification of transcriptional regulator of genes encoding proteins of translation machinery: Macrophages serve as the effector cells of cell mediated immunity in the control of infections. They are considered to be important for resistance to muco-cutaneous and systemic candidiasis. Our studies were aimed at understanding the response of Candida albicans cells to the presence of macrophages for extended period of time. The response was monitored using microarrays. Specifically genes involved in galactose, protein and lipid metabolism and stress response undergo concerted changes in their transcript levels. We analyzed the promoters of coregulated genes to identify common DNA elements present in them which might be involved in their transcriptional regulation. Promoter analysis of differentially expressed genes revealed presence of CPH1 and EFG1 transcription factor binding sites. Besides identifying CPH1 and EFG1 Binding sites, we identified two novel DNA elements in promoters of coregulated gene. A conserved motif TGAAAAGGAAG was identified in the promoters of genes involved in energy generation. Another 18 mer consensus palindromic sequence TAGGGCTNTAGCCCTAAT was identified in the promoters of about 48 genes. Majority of these genes encode ribosomal proteins. With the help of techniques like EMSA (Electophoretic Mobility Shift Assay) and south-western we had shown the presence of a protein of ~66 KDa molecular weight binding to the sequence with high specificity.
6

Study Of Rpb4, A Component Of RNA Polymerase II As A Coordinator Of Transcription Initiation And Elongation In S. Cerevisiae

Deshpande, Swati January 2013 (has links) (PDF)
RNA polymerase II (Pol II) is the enzyme responsible for the synthesis of all mRNAs in eukaryotic cells. As the central component of the eukaryotic transcription machinery, Pol II is the final target of transcription regulatory pathways. While the role for different Pol II associated proteins, co-activators and general transcription factors (GTFs) in regulation of transcription in response to different stimuli is well studied, a similar role for some subunits of the core Pol II is only now being recognized. The studies reported in this thesis address the role of the fourth largest subunit of Pol II, Rpb4, in transcription and stress response using Saccharomyces cerevisiae as the model system. Rpb4 is closely associated with another smaller subunit, Rpb7 and forms a dissociable complex (Edwards et al. 1991). The rpb4 null mutant is viable but is unable to survive at extreme temperatures (>34ºC and <12ºC) (Woychik and Young, 1989). This mutant has also been shown to be defective in activated transcription and unable to respond adequately to several stress conditions (Pillai et al. 2001; Sampath and Sadhale, 2005). In spite of wealth of available information, the exact role of Rpb4 in transcription process remains poorly understood. In the present work, we have used genetic, molecular and biochemical approaches to understand the role of Rpb4 as described in three different parts below: I. Role of Rpb4 in various pathways related to Transcription Elongation The genome-wide recruitment study of RNA pol II in presence and absence of Rpb4 has indicated role of Rpb4 in transcription elongation (Verma-Gaur et al. 2008). However, a recent proteomics based report has argued against it (Mosley et al. 2013). To address this conflict and understand Rpb4 functions, we monitored recruitment of RNA pol II on a few individual long genes in wild type and rpb4∆ cells. It was observed that RNA pol II recruitment on genes with longer coding regions is not significantly affected in rpb4∆ as compared to wild type thus ruling out role of Rpb4 in transcription elongation of these genes. However, our genetic interaction studies have shown a strong interaction (synthetic lethality) between RPB4 and the PAF1 and SPT4 genes, the products of which code for well-known transcription elongation factors. The studies based on Rpb4 overexpression in mutants for elongation factors, 6-Azauracil sensitivity of cells, effect of Dst1 overexpression in rpb4∆ cells and mitotic recombination rate in rpb4∆ cells have indicated functional interactions of Rpb4 with many of the transcription elongation factors. II. Studies on Genetic and Functional Interactions of Rpb4 with SAGA Complex in Promoter- Specific Transcription Initiation To carry out transcription, RNA pol II depends on several general transcription factors, mediators, activators, co-activators and chromatin remodeling complexes. In the present study, we explored the genetic and functional relationships between Rpb4 and the SAGA complex of transcription machinery, to gain some insight on the role of Rpb4 during transcription. Our chromatin immunoprecipitation data suggest that RNA pol II does not associate with promoters of heat shock genes during transcription activation of these heat stress induced genes in absence of Rpb4. SAGA coactivator complex is required for RNA pol II recruitment and transcription activation of these genes (Zanton and Pugh, 2004). However, recruitment of the SAGA complex at promoters of these heat shock genes was not affected in rpb4∆ cells after heat stress. Our genetic interaction analysis between RPB4 and components of SAGA complex (spt20∆) showed synthetic lethality indicating that fully functional Rpb4 and SAGA complex are required for cellular functions in the absence of heat stress and the simultaneous deletion of factors in the two complexes leads to cell death. III. Role of Rpb4 in phosphorylation cycles of Rpb1-CTD The C-Terminal Domain (CTD) of Rpb1 protein of RNA pol II undergoes several rounds of phosphorylation cycles at Ser-2 and Ser-5 residues on its heptad repeats during transcription. These phosphorylation marks are to be erased before the start of next round of transcription. Using protein pull down assay, we observed that hyperphosphorylated form of Rpb1 is reduced in rpb4∆ as compared to that seen in wild type cells among the free RNA pol II molecules. The level of Rpb2 protein was unaffected in both wild type and rpb4∆. These preliminary data hints at role of Rpb4 in the regulation of Rpb1 phosphorylation.
7

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.
8

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.

Page generated in 0.4166 seconds