• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of interacting partners of Discs overgrown in vivo / Identification of interacting partners of Discs overgrown in vivo

HOUFKOVÁ, Petra January 2009 (has links)
The mutated forms of the Discs overgrown gene causes overproliferation of imaginal discs of Drosophila melanogaster. Somatic mutations in its human counterpart, casein kinase I epsilon, were strongly associated with human breast cancer. Using the advantage of a high conservancy between fly's dco and human casein kinase I epsilon genes we have chosen D. melanogaster as a model organism to provide a list of probable Dco interaction partners via tandem affinity purification and mass spectrometry analysis. However, these proteins need to be independently verified as true Dco interaction partners.
2

A proteomic study of plant messenger RNA cleavage and polyadenylation specificity factors and the establishment of an in vitro cleavage assay system

Zhao, Hongwei. January 2008 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Botany, 2008. / Title from second page of PDF document. Includes bibliographical references.
3

Regulation of Positive Regulatory Domain I- Binding Factor 1 and Its Role in Mantle Cell Lymphoma

Desai, Shruti 25 May 2010 (has links)
The human positive regulatory domain I binding factor 1 (PRDI-BF1/PRDM1) promotes differentiation of mature B cells into antibody secreting plasma cells. In contrast ectopic expression of PRDM1 in lymphoma cells can lead to inhibition of proliferation or apoptosis. However, little is currently known about the regulation of PRDM1. The first study presented demonstrates that in lymphoma cells stimulation through the B cell receptor rapidly induces endogenous PRDM1 at the level of transcription. This study provides evidence that the PRDM1 promoter is preloaded and poised for activation in the B cell lines. The transcription factor PU.1 is shown to be required for B cell receptor induced expression of PRDM1 in lymphoma cells and in PU.1 positive myeloma cells. Furthermore, activation is associated with loss of the co-repressor TLE4 from the PU.1 complex. The second study establishes the requirement for PRDM1 in Mantle cell lymphoma (MCL) response to Bortezomib. MCL, an aggressive form of B cell lymphoma, has poor disease- free survival rate. The proteasome inhibitor, Bortezomib, is approved for treatment of relapsed and refractory MCL. However, the precise mechanism of action of Bortezomib is not well understood. Bortezomib rapidly induces transcription of PRDM1 along with apoptosis in MCL cell lines and primary MCL tumor samples. Knockdown of PRDM1 inhibits Bortezomib-induced apoptosis, while ectopic expression of PRDM1 alone leads to apoptosis in MCL. MKI67 and PCNA, which are required for proliferation and survival, were identified as novel direct targets of PRDM1 in MCL. Chromatin immunoprecipitation and knockdown studies reveal specific repression of MKI67 and PCNA is mediated by PRDM1 in response to Bortezomib. Furthermore promoter studies demonstrate that PRDM1 functions through a specific site in the proximal promoter region of PCNA and through a distal upstream repression domain on the MKI67 promoter. Together these findings establish PRDM1 as a key mediator of Bortezomib activity in MCL through suppression of proliferation and survival genes. The third study presented demonstrates use of Tandem affinity purification technique followed by mass spectrometry to identify PRDM1 and Reptin52 protein interactions. The observations in this study provide preliminary evidence of novel mechanism of regulation of PRDM1 protein function.
4

A Proteomic Study of Plant Messenger RNA Cleavage and Polyadenylation Specificity Factors and the Establishment of an <i>In Vitro</i> Cleavage Assay System

Zhao, Hongwei 12 August 2008 (has links)
No description available.
5

Étude de la fonction de la protéine RPAP4 et de son association avec l’ARN polymérase II

Lacombe, Andrée-Anne 11 1900 (has links)
L’ARN polymérase II (ARNPII), l’enzyme responsable de la transcription des ARN messagers, procède au décodage du génome des organismes vivants. Cette fonction requiert l’action concertée de plusieurs protéines, les facteurs généraux de la transcription, par exemple, formant un réseau d’interactions protéine-protéine, plusieurs étant impliquées dans la régulation de l’ARNPII à différents niveaux. La régulation de la transcription a été largement étudiée durant les quatre dernières décennies. Néanmoins, nous en connaissons peu sur les mécanismes qui régulent l’ARNPII avant ou après la transcription. Dans la première partie de cette thèse, nous poursuivons la caractérisation du réseau d’interactions de l’ARNPII dans la fraction soluble de la cellule humaine, travail qui a débuté précédemment dans notre laboratoire. Ce réseau, développé à partir de la méthode de la purification d’affinité en tandem couplée à la spectrométrie de masse (AP-MS) et à des méthodes d’analyses bioinformatiques, nous amène une foule d’informations concernant la régulation de l’ARNPII avant et après son interaction avec la chromatine. Nous y identifions des protéines qui pourraient participer à l’assemblage de l’ARNPII telles des chaperonnes et les protéines du complexe R2TP/prefoldin-like ainsi que des protéines impliquées dans le transport nucléocytoplasmique. Au centre de ce réseau se trouvent RPAP4, une GTPase qui semble se positionner à l’interface entre ces protéines régulatrices et l’ARNPII. Nous avons donc entamé l’étude la fonction de RPAP4, ce qui nous a menés à la conclusion que RPAP4 est essentielle à l’import nucléaire de l’ARNPII au noyau, où elle exerce sa fonction. Nous avons également montré que les motifs G et GPN sont essentiels à la fonction de RPAP4. Le traitement des cellules avec le bénomyl nous montre aussi que la fonction de RPAP4 et l’import nucléaire de l’ARNPII requièrent l’action des microtubules. La deuxième partie de la thèse s’intéresse à une autre protéine positionnée au centre du réseau, RPAP2. Cette dernière partage plusieurs interactions avec RPAP4. Elle est aussi essentielle à la localisation nucléaire de l’ARNPII et interagit directement avec celle-ci. RPAP4 et RPAP2 étant toutes deux des protéines cytoplasmiques qui font la navette entre le noyau et le cytoplasme, nous présentons des évidences que RPAP4 est impliquée dans l’export nucléaire de RPAP2 pour permettre à celle-ci d’être disponible dans le cytoplasme pour l’import de l’ARNPII dans le noyau. Dans la troisième partie de la thèse, nous étudions plus en profondeur les modifications post-traductionnelles de RPAP4, ce qui nous aide à mieux comprendre sa propre régulation et sa fonction auprès de l’ARNPII. RPAP4 est phosphorylée en mitose par la MAP kinase ERK5. Cette phosphorylation favorise l’interaction entre RPAP4 et RPAP2, ce qui empêche RPAP2 d’interagir avec l’ARNPII pendant la mitose, prévenant du même coup, son interaction avec la chromatine pendant cette phase du cycle cellulaire où la transcription est presque inexistante. / RNA polymerase II, the enzyme responsible for transcription of messenger RNA, decodes the genome of living organisms. This function requires the concerted action of several proteins, including transcription factors, which form a protein-protein interaction network. Many of them are implicated in the regulation of RNAPII transcription. Although regulation of transcription has been largely studied during the last four decades, little is known about mechanisms that regulate RNAPII prior and after the transcription reaction. In the first part of this thesis, we continue the characterization of the RNAPII interaction network of RNAPII in the soluble fraction of the human cell. This network, developed using tandem affinity purification method coupled with mass spectrometry (AP-MS) and bioinformatic analysis, provides a wealth of information about RNAPII regulation prior and after its interaction with chromatin for transcription. We identified proteins that can be involved in RNAPII assembly, including chaperones and the cochaperone complex R2TP prefoldin-like, and proteins involved in nucleocytoplasmic shuttling. RPAP4 is a GTPase that occupies a central position in this network being at the interface between these regulatory proteins and RNAPII. We therefore started to study the function of RPAP4, which lead us to conclude that RPAP4 is essential for RNAPII nuclear import. We also report that G domains and the GPN motif are essential for RPAP4 function. Treatment of the cells with benomyl suggests that microtubules are required for RPAP4 function and RNAPII nuclear import. The second part concerns another protein found in the network that is also centrally positioned in the network, called RPAP2. RPAP2 shares many interactions with RPAP4. This protein is also essential for the nuclear import of RNAPII as it interacts directly with it. RPAP4 and RPAP2 being cytoplasmic proteins that shuttle between the cytoplasm and the nucleus, we show evidences that RPAP4 is implicated in RPAP2 nuclear export to make it available for RNAPII nuclear import. In the third part, we study RPAP4 post-translational modifications, which help us to understand its own regulation and its function with RNAPII. RPAP4 is phosphorylated in mitosis by the MAP kinase ERK5. This phosphorylation promotes the interaction between RPAP4 and RPAP2. It prevents RPAP2 and RNAPII interaction and RNAPII chromatin localization in mitosis where transcription is mostly nonexistent.
6

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.
7

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.
8

IDENTIFICATION OF TARGETS AND AUXILIARY PROTEINS OF PYR/PYL/RCAR ABA RECEPTORS: PROTEIN PHOSPHATASES TYPE 2C (PP2Cs) AND C2-DOMAIN ABA-RELATED PROTEINS (CARs)

Rodríguez Solovey, Leisa Natacha 16 December 2015 (has links)
[EN] ABSTRACT Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYR/PYL/RCAR receptors (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS) for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calciumdependent interactions of PYR/PYL/RCAR ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL/RCAR receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL/RCAR function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL/RCAR-interacting partners that mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects PYR/PYL/RCAR subcellular localization and positively regulates ABA signaling. / [ES] RESUMEN La señalización por la hormona vegetal ácido abscísico (ABA) desempeña un papel crítico en la regulación del crecimiento de la raíz y en la arquitectura del sistema radical. La promoción de crecimiento de la raíz en condiciones de estrés hídrico mediada por ABA es clave para la supervivencia de las plantas bajo condiciones limitantes de agua. En este trabajo, hemos explorado el papel de los receptores PYR/PYL/RCAR (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS) de Arabidopsis (Arabidopsis thaliana) en la ruta de señalización de ABA en raíz. Así, hemos descubierto que el receptor de ABA PYL8 juega un papel no redundante en la regulación de la percepción de ABA en raíz. Inesperadamente, dada la naturaleza multigénica y la redundancia funcional parcial observada en la familia PYR/PYL/RCAR, el mutante pyl8 fue el único mutante sencillo de pérdida de función de los receptores PYR/PYL/RCAR que mostraba una sensibilidad reducida a la inhibición del crecimiento mediada por ABA en raíz. Este efecto se debe a la falta de inhibición mediada por PYL8 de varias fosfatasas del grupo A tipo 2C (PP2Cs), ya que PYL8 es capaz de interactuar in vivo con al menos cinco PP2Cs, denominadas HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 según lo han revelado la purificación por afinidad en tándem (TAP por sus siglas en inglés) y estudios proteómicos de espectrometría de masas. La transducción de la señal del ABA localizada en la membrana plasmática celular juega un papel crucial en los pasos iniciales de la señalización de la fitohormona, pero los mecanismos moleculares que unen los componentes básicos de la señalización y la membrana plasmática no están claros. Estudiando las interacciones de los receptores del ABA PYR/PYL/RCAR con la membrana plasmática hemos encontrado que éstos pueden interaccionar transitoriamente con ella de forma dependiente de calcio gracias a una familia de proteínas con dominios C2 relacionadas con la ruta de señalización de ABA (denominadas C2-domain ABA-related (CAR) proteins). Específicamente, se encontró que PYL4 interacciona de manera independiente de ABA con CAR1 tanto en la membrana plasmática como en el núcleo de las células vegetales. La proteína CAR1 pertenece a una familia multigénica constituida por 10 miembros en Arabidopsis thaliana, desde CAR1 hasta CAR10, y que solo se encuentra en plantas. Los ensayos de complementación bi-molecular de fluorescencia y de co-immunoprecipitación confirmaron la interacción en células vegetales tanto de PYL4-CAR1 como de otras parejas de PYR/PYL-CAR. La cristalización de la proteína CAR4 reveló que, además de un dominio C2 clásico de unión a lípidos dependiente de calcio, las proteínas de la familia CAR presentan un dominio específico que probablemente es responsable de la interacción con los receptores PYR/PYL/RCAR y de su posterior reclutamiento a las vesículas de fosfolípidos. Esta interacción es relevante para la función de los receptores PYR/PYL/RCAR en la señalización del ABA, ya que diferentes mutantes triples car de pérdida de función, que tienen afectados los genes CAR1, CAR4, CAR5, y CAR9, demostraron una reducción de la sensibilidad al ABA en ensayos de establecimiento de plántula y crecimiento de la raíz. En resumen, hemos identificado nueva familia de proteínas que son capaces mediar las interacciones transitorias dependientes de Ca2+ con vesículas de fosfolípidos, lo que a su vez afecta localización de PYR/PYL/RCAR y regula positivamente la señalización de ABA. / [CAT] RESUM La senyalització per l'hormona vegetal àcid abcíssic (ABA) exerceix un paper crític en la regulació del creixement de l'arrel i també en l'arquitectura del sistema radical. La promoció del creixement de l'arrel en condicions d'estrés hídric, regulada per ABA és clau per la supervivència de les plantes sota condicions limitants d'aigua. Amb aquest treball, hem investigat el paper dels receptors PYR/PYL/RCAR (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS) d'Arabidopsis (Arabidopsis thaliana) en el camí de senyalització d'ABA en arrel. Així, hem descobert que el receptor d'ABA PYL8 exerceix un paper no redundant en la regulació de la percepció d'ABA en arrel. Inesperadament, donada la naturalesa multigènica i la redundància funcional parcial que s'observa en la família PYR/PYL/RCAR, el mutant pyl8 va ser l'únic mutant senzill de pèrdua de funció dels receptors PYR/PYL/RCAR que mostrava una sensibilitat reduïda a la inhibició del creixement mitjançada per l'ABA en l'arrel. Doncs aquest efecte es deu a la falta d'inhibició regulada per PYL8 de diverses fosfatases del grup A tipus 2C (PP2Cs), ja que PYL8 té la capacitat d'interactuar in vivo almenys amb cinc PP2Cs, anomenades HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABAHYPERSENSITIVE GERMINATION3 segons ho han revelat per una banda la purificació per afinitat en tàndem (TAP són les seues sigles en anglés) i per altra banda, estudis proteòmics d'espectrometria de masses. Pel que fa a la transducció del senyal del l'ABA, la qual es localitza en la membrana plasmàtica cel¿lular, juga un paper molt important en els primers instants de la senyalització de la fitohormona, no obstant això els mecanismes moleculars que uneixen els components bàsics d'aquesta senyalització amb la membrana plasmàtica, no es troben del tot clars. Per tant, s'han estudiat les interaccions que tenen els receptors del ABA PYR/PYL/RCAR amb la membrana plasmàtica, i hem trobat que aquests tenen la capacitat d'interaccionar transitòriament amb la membrana de forma dependent al calci, gràcies a una família de proteïnes amb domini C2, les quals es troben relacionades amb la ruta de senyalització d'ABA(anomenades C2domain ABArelated (CAR) proteins).Específicament, es va trobar que PYL4 interacciona d'una manera independent al ABA amb CAR1, tant en la membrana plasmàtica, com en el nucli de les cèl¿lules vegetals. La proteïna CAR1 pertany a la família multigènica constituïda per 10 components en Arabidopsis thaliana, des de CAR1 fins CAR10, que tan sols es troba en plantes. Els assajos de complementació bimolecular de fluorescència i de co-immunoprecipitació, van confirmar la interacció en cèl¿lules vegetals, tant de PYL4CAR1 com d'altres parelles de PYR/PYL-CAR. La cristal¿lització de la proteïna CAR4 va revelar que, a més d'un domini C2 clàssic de unió a lípids dependent del calci, les proteïnes de la família CAR presenten un domini PYR/PYL/RCAR, i del seu posterior reclutament a les vesícules fosfolipídiques. Doncs, aquesta interacció és rellevant en la funció dels receptors PYR/PYL/RCAR, ja que participa en la senyalització del l'ABA. Aquesta interacció es clau per a la funció dels receptors, ja que diferents mutants triples car de pèrdua de funció, els quals posseïxen afectats els gens CAR1, CAR4, CAR5 i CAR9, van mostrar una reducció de la sensibilitat a l'ABA en assajos d'establiment de plàntula i creixement de l'arrel. En conclusió, hem identificat una nova família de proteïnes amb la capacitat d'organitzar les interaccions transitòries dependents del calci amb vesícules de fosfolípids, fet que al seu torn afecta la localització de PYR/PYL/RCAR i regula positivament la senyalització d'ABA. / Rodríguez Solovey, LN. (2015). IDENTIFICATION OF TARGETS AND AUXILIARY PROTEINS OF PYR/PYL/RCAR ABA RECEPTORS: PROTEIN PHOSPHATASES TYPE 2C (PP2Cs) AND C2-DOMAIN ABA-RELATED PROTEINS (CARs) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58862 / TESIS

Page generated in 0.1231 seconds