Spelling suggestions: "subject:"ziel vertical migration"" "subject:"kiel vertical migration""
1 |
Investigations into temporal and spatial variability of zooplankton at the Svalbard archipelagoRabindranath, Ananda January 2013 (has links)
Plankton are generally considered good indicators for ocean climate variability, but plankton data from the Arctic are still comparatively scarce. Due to this scarcity of information, the prevalence of vertical migration behaviour at high latitude is still debated. Atlantic inflow is a key process governing biological diversity in the Arctic Ocean, and the location of the Svalbard archipelago makes it an ideal study area to monitor this inflow. Comparing the zooplankton community within the fjords of Svalbard at various latitudes allowed us to assess the influence of Atlantic inflow and any subsequent changes in zooplankton composition that may have implications for higher trophic levels. Using sediment traps deployed on oceanic moorings, Chapter 3 of this thesis analysed long term observations from sea-ice dominated Rijpfjorden for the first time, and compared the zooplankton to Atlantic Water influenced Kongsfjorden. Chapters 4 and 5 investigated the spatial relevance of our moored observations using shipboard observations, and chapters 6 and 7 present observations of vertical migration across a range of conditions. Kongsfjorden was dominated by Calanus copepods associated with Arctic and Atlantic water, and strongly influenced by Atlantic Water advection. Rijpfjorden was largely influenced by sea-ice formation with higher proportional abundances of macrozooplankton species. Advection brought Atlantic associated species into Rijpfjorden during warmer years. Prevailing hydrology and bathymetry were highlighted as factors forcing zooplankton distribution, while advection was identified as responsible for much of the observed small scale spatial variation amongst weaker swimmers. At an aggregation scale of 0.5 nautical miles, zooplankton distribution was highly patchy and moored observations could only be reliably expanded outwards to a maximum of 1 nautical mile. Low amplitude diel vertical migration (especially by younger copepodids) was identified in surface waters when a food source was available. These observations must be considered within the dynamic framework of advection highlighted by this thesis.
|
2 |
Behavioral Strategies of Lanternfishes (Family Myctophidae) in a High-Latitude Fjord and the Tropical Red SeaDypvik, Eivind 12 1900 (has links)
The diel vertical migration (DVM) and feeding periodicity of myctophids (lanternfishes) were studied in the high-latitude Masfjorden, Norway, and the tropical Red Sea. In Masfjorden, a bottom-mounted echo sounder permitted continuous studies throughout the year, and revealed a diverse seasonal DVM behavior. During spring and summer, when zooplankton peaks in the epipelagic zone, migrating glacier lanternfish performed normal DVM (NDVM), ascending to the epipelagic zone during night and residing below ~200m during daytime. During autumn and winter, when Calanus overwinters between ~150–300 m, migrating glacier lanternfish mainly performed inverse DVM (IDVM), ascending to feed on Calanus in mid-waters during daytime. Non migrating (NoDVM) individuals were present all year below ~300 m in Masfjorden. In the Red Sea, where zooplankton has an epipelagic distribution, the whole population of skinnycheek lanternfish performed NDVM, feeding in the epipelagic zone at night, while residing at ~500–750 m during daytime. The warm waters of the Red Sea were hypothesized to limit the time individuals can stay in the mesopelagic zone without migrating to feed in the epipelagic layers. The DVM behavior of myctophids largely seemed to relate to the distribution of zooplankton, and it was hypothesized that NDVM will prevail with epipelagic distribution of prey, while IDVM and NoDVM are common in areas where zooplankton migrate seasonally to mesopelagic depths. Potential predators were continuously present, found to apparently attack glacier lanternfish, at mesopelagic depth in Masfjorden. Thus, myctophids are under threat of predation even at mesopelagic depth.
|
3 |
38-kHz ADCP investigation of deep scattering layers in sperm whale habitat in the northern Gulf of MexicoKaltenberg, Amanda May 17 February 2005 (has links)
A hull-mounted 38-kHz phased-array acoustic Doppler current profiler (ADCP) was used to acoustically survey the continental margin of the northern Gulf of Mexico (GOM) during 6 cruises in 2002-2003. This is the first backscatter survey with a 38-kHz ADCP in the Gulf of Mexico. ADCPs have been used as a proxy to measure the volume backscatter return from plankton in the water column, however previous studies were restricted to the upper 200 to 300 meters due to the relatively high frequency of operation (150-300 kHz) of the transducers. In addition to measuring deep water current velocities, the 38-kHz phased-array ADCP can measure Relative Acoustic Backscatter Intensity (RABI) as deep as 1000 meters. The daytime depth of the main deep scattering layer at 400 to 500 meters was resolved, and locally high backscatter intensity can be seen down to 800 meters. The objectives were to determine how to analyze RABI from the instrument to resolve scattering layers, and then to seek secondary deep scattering layers of potential prey species below the main deep scattering layer, from 600 to 800 meters in the feeding range for Gulf of Mexico sperm whales.
Based on RABI from the 38-kHz ADCP, secondary DSLs in sperm whale diving range were more commonly recorded over the continental shelf than in the deep basin region of the Gulf of Mexico. The daytime depths of migrating plankton showed variation depending on physical circulation features (cyclone, anticyclone, proximity to Mississippi river, and Loop Current) present. Vertical migrations compared between concurrently running 38 and 153-kHz ADCPs showed an overlap of acoustic scatterers recorded by the two instruments, however the 153-kHz instrument has much finer vertical resolution. Vertical migration rates were calculated and simultaneous net tow samples from one of the cruises was used to compare abundance estimates by the two methods.
|
4 |
Biophysical Interactions in the Straits of Florida: Turbulent Mixing Due to Diel Vertical Migrations of ZooplanktonDean, Cayla Whitney 01 July 2014 (has links)
Diel vertical migrations (DVM) comprise the largest animal migration on the planet and are a phenomenon present in all bodies of water on Earth. A strong sound scattering layer undergoing DVM was observed in the Straits of Florida via a bottom-mounted Acoustic Doppler current profiler (ADCP) Workhorse Longranger 75 kHz (Teledyne RD Instruments) located at the 244 m isobath. ADCP average backscatter showed a clear periodicity corresponding with sunrise and sunset times indicating the presence of a nocturnal DVM. Analysis of the ADCP backscatter data indicated zooplankton swimming velocities were faster during sunrise than sunset times. In several cases the zooplankton swimming velocity appeared to be faster at the beginning of the descent, after which the swimming velocity decreased. Analysis of ADCP velocity data indicated a measureable decrease in the northward component of the current velocity field during migrations (sunrise and sunset) compared to three hours prior. This was presumably associated with an increase in drag due to turbulent friction associated with DVM. A non-hydrostatic computational fluid dynamics (CFD) model with injection of Lagrangian particles was utilized to simulate the effects of DVM on the velocity field and turbulence signature of the Florida Current. A domain simulating a section of the Florida Current was created and zooplankton were represented by particle injection with a discrete phase model. The model was run with and without particles, holding all other parameters the same, for comparison. Idealized temperature stratification and velocity profiles were set for both summer and winter conditions to observe seasonal differences. For each case, velocity and turbulence with particles were compared to results without particles to confirm the changes in profiles were due to the zooplankton (Lagrangian particles). In several cases there was an observable change in average x-velocity profiles due to the injection of particles into the domain. In all cases there was an observable increase in subgrid turbulent viscosity in the wake of the injected particles. This effect was much stronger in the winter case, most likely due to stratification of the water column which gave a near critical Richardson number. These results indicated that DVM does in fact have an effect on the velocity profile and turbulence signature in a strong current under certain conditions and that there was a seasonal difference due to stratification profiles.
|
5 |
Vertical Distribution of Daily Migrating Mesopelagic Fish in Respect to Nocturnal LightsPrihartato, Perdana 12 1900 (has links)
The nighttime distribution of vertically migrating mesopelagic fish in relation to
nocturnal light was studied during a circumglobal survey, in the Red Sea, and in a fjord at
high latitude. The study was based on data derived from ship borne echo sounders
(circumglobal and the Red Sea) as well as using upward looking echo sounders mounted
on the bottom (Masfjorden, Norway). We also applied a numerical model for analyzing
diel vertical migration patterns. The effect of the lunar cycle was the focus in studies at
low latitudes, while seasonal changes in nocturnal light climate was in focus at high
latitude. Lunar phase significantly affected the distribution of mesopelagic fish at the
global scale and in the Red Sea. During nights near full moon, scattering layers of
mesopelagic fish distributed deeper than during darker phases of the moon. At high
latitude, mesopelagic fish switched its behavior along with seasonal changes in nocturnal
lights. In autumn, the population of the studied fish (Maurolicus mueleri) formed
separated layers. Juveniles performed normal diel vertical migration followed by
midnight sinking, with midnight sinking mainly related to temperature minima and also
for avoiding predators. Meanwhile the adults did not migrate vertically, reducing
foraging but increasing the adult survival. From late winter to mid-Spring, interrupted
ascents behavior was noted in the afternoon. Predator avoidance, satiation, and finding
temperature optimum might be the reason behind interrupted ascents. At lighter nights in
mid-summer, M. muelleri took on schooling behavior, likely as an anti-predator behavior
permitting access to the upper waters in the absence of darkness.
|
6 |
Cause and Consequences of Spatial Dynamics of Planktonic Organisms in Lake EcosystemsLeach, Taylor Hepburn 29 November 2016 (has links)
No description available.
|
7 |
Factors mediating the distribution and impact of the non-native invertebrate predator Bythotrephes longimanusJokela, ANNELI MARIE 17 June 2013 (has links)
Predicting the impacts of non-native species remains one of the greatest challenges to invasion ecologists. Because of their insularity, freshwater systems are particularly vulnerable to invasions, especially from non-native predators. The research in this thesis explores the role of abiotic and biotic factors in mediating the distribution and impact of Bythotrephes longimanus, a predatory cladoceran that has been introduced to freshwater systems in North America. Although the general impacts of this invasion have been documented, little is known about the factors that modulate them. Using a combination of field surveys and experiments, I tested several hypotheses concerning the influence of interactions with native species, as well as the role of heterogeneity in the light environment, in mediating the impact of Bythotrephes.
Results demonstrated that biotic resistance by native macroinvertebrate predators does not play a limiting role in the establishment success of Bythotrephes. However, the within-lake distribution of Bythotrephes was influenced by these macroinvertebrates, suggesting that the native predator context matters when trying to understand the impacts of non-native predators. This was demonstrated with a mesocosm experiment in which the impact of Bythotrephes was constrained by the native Chaoborus larvae. In terms of the abiotic environment, in situ feeding experiments demonstrated that refuges from impact could exist for some prey taxa, as the outcome of predation by Bythotrephes was dependent on light availability and some prey taxa were more successful at evading predation under low light conditions. Finally, results show that adaptive behaviour by prey is also an important determinant of impact, as migrating Daphnia can escape predation effects by Bythotrephes. The combination of light-limited predation and a shallow distribution by Bythotrephes selects for prey that occupy relatively deeper positions during the day.
As a whole, this research highlights the importance of complex interactions in mediating the impact of Bythotrephes and may help to explain some of the variation that has been documented among invaded lakes. A better understanding of these complex interactions can improve our ability to anticipate impacts as Bythotrephes continues to spread, as well as provide insight on some of the long-term effects following invasion. / Thesis (Ph.D, Biology) -- Queen's University, 2013-06-17 09:26:35.221
|
8 |
Trophic interactions and behaviour : Studies relevant to a Baltic Sea biomanipulationHolliland, Per B. January 2012 (has links)
The main theme of this thesis is the interactions of animals with the environment and each other. The thesis was written within the framework of a biomanipulation project “Pikeperch in Himmerfjärden”. With the aim to investigate possible trophic pit-falls, give the manipulation the best possible start, and find ways to monitor the progression of the manipulation. In Paper I the diet of the invader cladoceran Cercopagis pengoi is analysed with stable isotopes; conducted prior to stocking. C.pengoi has a preference for large copepods, indicating possible competition with fish. Paper II investigates the behavioural differences between pikeperch fingerlings reared in different environments (pond vs. tank). Results suggest that fish reared in semi-natural ponds are more likely to survive directly after stocking. In Paper III and IV, the diel vertical migrations (DVM) of copepods are in focus. In Paper III the migrations of two copepod species: Acartia spp. and Eurytemora affinis are studied over season and life stage. The amplitude of migration was found to increase with ontogeny for both species, indicating evasion of visual predators. Paper IV examines the varying migratory patterns of adult female E. affinis finding that these animals migrate more actively when feeding conditions deteriorate and growth decreases. The overall conclusions of the thesis are that behavioural, not only direct trophic interactions are key when studying ecosystems. / <p>At the time of the doctoraldefense, the following papers were unpublished and had a status asfollows: Paper2: In press. Paper 4: Manuscript.</p>
|
9 |
Response of Zooplankton Community of Lake Winnipeg to Environmental ChangesKamada, Daigo 18 December 2012 (has links)
Lake Winnipeg has been subject to intense eutrophication and invasive species such as Rainbow Smelt and Eubosmina coregoni for the last 40 years. This study demonstrated significant increases in total phosphorus, total nitrogen, chlorophyll-a, overall zooplankton abundance, and specifically Cladocera, between 1969 and the first decade of the 21st century. There were specific basin differences in the long-term changes of the Cladocera community, with the species Chydorus sphaericus and Ceriodaphnia quadrangula negatively affected by high levels of phosphorus, nitrogen and chlorophyll-a. Moreover, long-term change in the Cladocera community composition and abundance throughout the years (1969-2011) during summer was correlated with intensifying eutrophication. Additionally, weak diel vertical migration in the zooplankton community was observed for the first time in Lake Winnipeg.
|
10 |
Response of Zooplankton Community of Lake Winnipeg to Environmental ChangesKamada, Daigo 18 December 2012 (has links)
Lake Winnipeg has been subject to intense eutrophication and invasive species such as Rainbow Smelt and Eubosmina coregoni for the last 40 years. This study demonstrated significant increases in total phosphorus, total nitrogen, chlorophyll-a, overall zooplankton abundance, and specifically Cladocera, between 1969 and the first decade of the 21st century. There were specific basin differences in the long-term changes of the Cladocera community, with the species Chydorus sphaericus and Ceriodaphnia quadrangula negatively affected by high levels of phosphorus, nitrogen and chlorophyll-a. Moreover, long-term change in the Cladocera community composition and abundance throughout the years (1969-2011) during summer was correlated with intensifying eutrophication. Additionally, weak diel vertical migration in the zooplankton community was observed for the first time in Lake Winnipeg.
|
Page generated in 0.1492 seconds