Spelling suggestions: "subject:"dielectric grating"" "subject:"ielectric grating""
1 |
Laser Beam Pathway Design and Evaluation for Dielectric Laser AccelerationRasouli, Karwan January 2019 (has links)
After nearly 100 years of particle acceleration, particle accelerator experiments continue providing results within the field of high energy physics. Particle acceleration is used worldwide in practical applications such as radiation therapy and materials science research. Unfortunately, these accelerators are large and expensive. Dielectric Laser Acceleration (DLA) is a promising technique for accelerating particles with high acceleration gradients, without requiring large-scale accelerators. DLA utilizes the electric field of a high energy laser to accelerate electrons in the proximity of a nanostructured dielectric surface.The aim of this project was limited to laser beam routing and imaging techniques for a DLA experiment. The goal was to design the laser beam pathway between the laser and the dielectric sample, and testing a proposed imaging system for aiming the laser. This goal was achieved in a test setup using a low-energy laser. In the main setup including a femtosecond laser, the result indicated lack of focus. For a full experimental setup, a correction of this focus is essential and the beam path would need to be combined with a Scanning Electron Microscope (SEM) as an electron source.
|
2 |
Integrated System and Component Technologies for Fiber-Coupled MM-Wave/THz SystemsZandieh, Alireza 12 December 2012 (has links)
THz and mm-wave technology has become increasingly significant in a very diverse range of applications such as spectroscopy, imaging, and communication as a consequence of a plethora of significant advances in this field. However to achieve a mass production of THz systems, all the commercial aspects should be considered. The main concerns are attributed to the robustness, compactness, and a low cost device. In this regard, research efforts should be focused on the elimination of obstacles standing in the way of commercializing the THz technology.
To this end, in this study, low cost fabrication technologies for various parts of mm-wave/THz systems are investigated and explored to realize compact, integrated, and rugged components. This task is divided into four phases. In the first phase, a robust fiber-based beam delivery configuration is deployed instead of the free beam optics which is essential to operate the low cost THz photomixers and photoconductive antennas. The compensation of different effects on propagation of the optical pulse along the optical fiber is achieved through all-fiber system to eliminate any bulky and unstable optical components from the system. THz measurements on fiber-coupled systems exhibit the same performance and even better compared to the free beam system. In the next phase, the generated THz wave is coupled to a rectangular dielectric waveguide through design of a novel transition with low insertion loss. The structure dimensions are reported for various range of frequencies up to 650GHz with insertion loss less than 1dB. The structure is fabricated through a standard recipe. In third phase, as consequence of the advent of high performance active device at mm-wave and THz frequency, a transition is proposed for coupling the electromagnetic wave to the active devices with CPW ports. Different approaches are devised for different frequencies as at higher frequencies any kind of metallic structure can introduce a considerable amount of loss to the system. The optimized structures show minimum insertion loss as low as 1dB and operate over 10% bandwidth. The various configurations are fabricated for lower frequencies to verify the transition performance. The last phase focuses on the design, optimization, fabrication and measurements of a new dielectric side-grating antenna for frequency scanning applications. The radiation mechanism is extensively studied using two different commercial full-wave solvers as well as the measured data from the fabricated samples. The optimized antenna achieves a radiation efficiency of 90% and a gain of 18dB. The measured return loss and radiation pattern show a good agreement with the simulation results.
|
3 |
Integrated System and Component Technologies for Fiber-Coupled MM-Wave/THz SystemsZandieh, Alireza 12 December 2012 (has links)
THz and mm-wave technology has become increasingly significant in a very diverse range of applications such as spectroscopy, imaging, and communication as a consequence of a plethora of significant advances in this field. However to achieve a mass production of THz systems, all the commercial aspects should be considered. The main concerns are attributed to the robustness, compactness, and a low cost device. In this regard, research efforts should be focused on the elimination of obstacles standing in the way of commercializing the THz technology.
To this end, in this study, low cost fabrication technologies for various parts of mm-wave/THz systems are investigated and explored to realize compact, integrated, and rugged components. This task is divided into four phases. In the first phase, a robust fiber-based beam delivery configuration is deployed instead of the free beam optics which is essential to operate the low cost THz photomixers and photoconductive antennas. The compensation of different effects on propagation of the optical pulse along the optical fiber is achieved through all-fiber system to eliminate any bulky and unstable optical components from the system. THz measurements on fiber-coupled systems exhibit the same performance and even better compared to the free beam system. In the next phase, the generated THz wave is coupled to a rectangular dielectric waveguide through design of a novel transition with low insertion loss. The structure dimensions are reported for various range of frequencies up to 650GHz with insertion loss less than 1dB. The structure is fabricated through a standard recipe. In third phase, as consequence of the advent of high performance active device at mm-wave and THz frequency, a transition is proposed for coupling the electromagnetic wave to the active devices with CPW ports. Different approaches are devised for different frequencies as at higher frequencies any kind of metallic structure can introduce a considerable amount of loss to the system. The optimized structures show minimum insertion loss as low as 1dB and operate over 10% bandwidth. The various configurations are fabricated for lower frequencies to verify the transition performance. The last phase focuses on the design, optimization, fabrication and measurements of a new dielectric side-grating antenna for frequency scanning applications. The radiation mechanism is extensively studied using two different commercial full-wave solvers as well as the measured data from the fabricated samples. The optimized antenna achieves a radiation efficiency of 90% and a gain of 18dB. The measured return loss and radiation pattern show a good agreement with the simulation results.
|
Page generated in 0.0712 seconds