• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dielectric microspheres as optical cavities.

January 1988 (has links)
by Ching Shuk Chi, Emily. / Parallel title in Chinese characters. / Thesis (M.Ph.)--Chinese University of Hong Kong, 1988. / Bibliography: leaves 90-92.
2

Momentum of light in dielectric media.

January 1983 (has links)
by Ng Chiu-king. / Chinese title: / Bibliography: leaves 68-69 / Thesis (M.Phil.)--Chinese University of Hong Kong, 1983
3

Relation of the extreme ultraviolet reflectance to the optical constants generated by a Kramers-Kronig analysis with application to samples of the alloy Cd Zn As

Ellis, Harry Waters 05 1900 (has links)
No description available.
4

Green's function formalism of dielectric resonance on binary networks: application to optical properties. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Gu Ying. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. [111]-117). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
5

Performance of all dielectric self-supporting fibre optic cable in high voltage environments.

Khan, Mohamed Fayaz. January 2003 (has links)
Power utilities around the world are now in the practice of installing fiber optic cables on their high voltage transmission networks. These high-speed communication channels can, not only transmit data needed for utility operation, but the unused fiber capacity may also be rented to others for communication. All dielectric self-supporting (ADSS) fiber optic cable appears to be the fiber optic cable most frequently installed by power utilities as it is more economical, has a larger fiber capacity and may be installed on a transmission line without de-energization. When installed however, ADSS fiber optic cable does undergo some degree of degradation caused either by armor rod corona at the towers or dry-band arcing. A comprehensive literature survey regarding both phenomena is presented in this study, as well as current mitigation techniques. Different models that describe the process of dry-band arcing are discussed, including those where an equivalent circuit is used to represent a polluted fiber optic cable in a high voltage environment. An implementation of this model on a MATLAB® based computer program is used to evaluate parameters such as leakage current magnitude, which may be used to predict the possibility of dry-band arcing. This leakage current is also compared to simulated results that were generated using a power system analysis program called Alternate Transients Program (ATP). A finite element package, FEMLAB®, was used to model the experimental system, prior to construction. A single-phase transmission line with an accompanying fiber optic cable was constructed. The leakage current magnitude obtained from this experiment was subsequently compared to those obtained from the simulations. These leakage current comparisons are discussed and explained in view of limitations with the theoretical models and refinements in the experimental techniques employed. The results clearly indicate that physical parameters like pollution severity, system voltage, length of span and the point of attachment of the ADSS fiber optic cable in the tower play a significant role in the determination of leakage currents induced on the outer sheath of the cable. These induced currents result in the formation of 'dry bands', due to joule heating, and this could result in arcing activity that erodes the fiber optic cable. / Thesis (M.Sc.Eng)-University of Natal, Durban, 2003.
6

Optical transmission properties of dielectric aperture arrays. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. / Subsequently, optical transmission properties through a self-mixing interferometer array are studied and a novel high-resolution cost-effective optical spectrometer is proposed. The miniature interferometer-based spectrometer is made of polymethyl methacrylate (PMMA) with a CCD as the detector. The detected intensity of each CCD pixels contains the spectral information. Since each frequency component in the incoming beam corresponds to a unique phase difference of the two beam portions of each optical interferometer, the total intensity received by each CCD pixel, which is resulted from the addition of the interference signals from all the frequency components in the beam, should also be unique. Therefore, the spectrum calculation is a problem to solve an ill-posed linear system by using Tikhonov regularization method. Simulation results show that the resolution can reach picometer level. Apart from the choice of path difference between the interfering beams, the spectral resolution also depends on the signal-to-noise ratio and analogue-digital conversion resolution (dynamic range) of the CCD chip. In addition, the theory of uniform waveguide scattering is explored to expand the possibility of using such mini-interferometers for performing free-space spectral analysis of waveguide devices. At the same time, the method of least squares is used to correct the pixel non-uniformity of the CCD so as to improve the performance of the spectrometer. / The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index units (RIU) and a dynamic range as large as 0.17 RIU. / The sensor chip and spectrometer chip introduced here are based on the interference of light transmitted through dielectric aperture arrays. Their compact feature renders these devices ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs. / Yang, Tao. / Adviser: H. P. Ho. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 150-163). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
7

Study of the optical properties of one dimensional metallic gratings: 一維金屬光栅光學特性的研究 / 陸偉俊. / 一維金屬光栅光學特性的研究 / Study of the optical properties of one dimensional metallic gratings: Yi wei jin shu guang shan guang xue te xing de yan jiu / Lu, Weijun. / Yi wei jin shu guang shan guang xue te xing de yan jiu

January 2010 (has links)
Luk, Wai Chun = / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 101-108). / Abstracts in English and Chinese. / Luk, Wai Chun = / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Theoretical Background --- p.5 / Chapter 2.1 --- Maxwell´ةs equations in matter --- p.5 / Chapter 2.2 --- Dielectric constant of materials --- p.8 / Chapter 2.3 --- Dispersion relation of surface plasmon polaritons --- p.10 / Chapter 2.4 --- Excitation of surface plasmon polaritons --- p.16 / Chapter 2.4.1 --- Prism coupling --- p.17 / Chapter 2.4.2 --- Grating coupling --- p.21 / Chapter 2.5 --- Diffraction of light in gratings --- p.26 / Chapter 2.6 --- Applications --- p.27 / Chapter 3 --- Analysis Methods --- p.29 / Experimental Section --- p.29 / Chapter 3.1 --- Interference Lithography --- p.29 / Chapter 3.2 --- Gold grating fabrication --- p.32 / Chapter 3.2.1 --- Substrate preparation --- p.33 / Chapter 3.2.2 --- Photoresist preparation --- p.34 / Chapter 3.2.3 --- Spin coating of omnicoat and photoresist --- p.35 / Chapter 3.2.4 --- Interference lithography set-up and procedures --- p.35 / Chapter 3.2.5 --- The post-exposed treatments --- p.37 / Chapter 3.2.6 --- The optimal exposure time calibration --- p.37 / Chapter 3.2.7 --- Gold thin film deposition --- p.39 / Chapter 3.2.8 --- Typical gold grating sample --- p.41 / Chapter 3.3 --- Measurement system --- p.41 / Chapter 3.3.1 --- The angle dependent reflectivity measurement --- p.42 / Chapter 3.3.2 --- Data presentation of a typical band structure --- p.45 / Chapter 3.3.3 --- Periodicity measurement of the grating samples --- p.48 / Chapter 3.3.4 --- Diffracted intensity measurement of gratings --- p.52 / Chapter 3.3.5 --- Data presentation of the angle dependent diffracted intensity measurement --- p.53 / Calculation Section --- p.54 / Chapter 3.4 --- RCWA simulations --- p.54 / Chapter 3.4.1 --- The dispersion relation --- p.56 / Chapter 3.4.2 --- The diffracted intensity --- p.56 / Chapter 3.4.3 --- The field pattern graphs --- p.57 / Chapter 4 --- Resonance modes in one-dimensional gold gratings --- p.60 / Chapter 4.1 --- Structure of the gold grating samples --- p.61 / Chapter 4.2 --- Results of angle dependent reflectivity --- p.63 / Chapter 4.2.1 --- Surface Plasmon Polaritons (SPPs) --- p.65 / Chapter 4.2.2 --- Wood´ةs anomaly --- p.65 / Chapter 4.2.3 --- Waveguide Resonance (WG) --- p.67 / Chapter 4.2.4 --- Coupling of SPPs and WG --- p.67 / Chapter 4.3 --- Results of angle dependent diffracted intensity measurement --- p.68 / Chapter 4.4 --- Basic properties of SPPs and WG modes by RCWA --- p.73 / Chapter 4.4.1 --- Sample 1 (D = 40 nm) --- p.74 / Chapter 4.4.1(a) --- λ = 980 nm of Sample 1 --- p.75 / Chapter 4.4.1(b) --- λ = 633 nm of Sample 1 --- p.81 / Chapter 4.4.2 --- Sample 2 (D = 390 nm) --- p.83 / Chapter 4.4.2(a) --- λ = 980 nm of Sample 2 --- p.85 / Chapter 4.4.2(b) --- λ = 725 nm of Sample 2 --- p.87 / Chapter 4.4.2(c) --- λ = 633 nm of Sample 2 --- p.92 / Chapter 4.5 --- Summary --- p.97 / Chapter 5 --- Conclusions --- p.99 / Bibliography --- p.101
8

Experimental and theoretical studies on the optical properties of metallic gratings. / 金屬光栅光學特性的實驗和理論研究 / Experimental and theoretical studies on the optical properties of metallic gratings. / Jin shu guang shan guang xue te xing de shi yan he li lun yan jiu

January 2009 (has links)
Sham, Chun Hong = 金屬光栅光學特性的實驗和理論研究 / 沈鎮康. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 109-111). / Abstract also in Chinese. / Sham, Chun Hong = Jin shu guang shan guang xue te xing de shi yan he li lun yan jiu / Shen Zhenkang. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Overview of the Thesis --- p.2 / Chapter 2 --- Basic Theory --- p.4 / Chapter 2.1 --- Dielectric Constant of Metals --- p.5 / Chapter 2.2 --- The Maxwell´ةs Equations --- p.7 / Chapter 2.3 --- Scaling Properties of the Maxwell´ةs Equations --- p.9 / Chapter 2.4 --- Translational Symmetry and the Bloch´ةs Theorem --- p.10 / Chapter 2.4.1 --- Continuous Translational Symmetry --- p.11 / Chapter 2.4.2 --- Discrete Translational Symmetry --- p.12 / Chapter 2.4.3 --- Photonic Bloch´ةs Theorem --- p.13 / Chapter 3 --- Principles of Rigorous Coupled Wave Analysis --- p.14 / Chapter 3.1 --- Mathematical Formulation --- p.15 / Chapter 3.2 --- One-layer systems --- p.15 / Chapter 3.3 --- Layered Systems --- p.19 / Chapter 3.3.1 --- Matching Boundary Conditions --- p.19 / Chapter 3.3.2 --- The Transfer Matrices --- p.21 / Chapter 3.3.3 --- Scattering Matrices --- p.22 / Chapter 3.4 --- Calculation of Reflection and Transmission --- p.24 / Chapter 3.5 --- Calculation of Field Pattern --- p.26 / Chapter 3.5.1 --- Finding the Coefficients --- p.26 / Chapter 3.5.2 --- Summing to Get the Field --- p.27 / Chapter 3.6 --- 5-polarization --- p.27 / Chapter 3.7 --- Analogy to mechanics --- p.29 / Chapter 3.8 --- Conclusion --- p.30 / Chapter 4 --- Numerical Implementation of Rigorous Coupled Wave Analysis --- p.31 / Chapter 4.1 --- Finite Number of Terms --- p.31 / Chapter 4.2 --- Fourier Factorization Rule --- p.32 / Chapter 4.3 --- Calculation of Field Pattern --- p.34 / Chapter 4.4 --- Transfer Matrix for Forward Deduction --- p.36 / Chapter 4.5 --- Calculation of Time-Averaged Poynting Vector --- p.36 / Chapter 4.6 --- Convergence of RCWA --- p.37 / Chapter 4.7 --- Simple Examples --- p.40 / Chapter 4.7.1 --- Oblique Incidence on Vacuum --- p.40 / Chapter 4.7.2 --- Oblique Incidence on Semi-Infinite Glass --- p.41 / Chapter 4.7.3 --- Normal Incidence on a Thin Gold Film --- p.41 / Chapter 5 --- A Tunable All-Direction Light Absorber --- p.43 / Chapter 5.1 --- Description of the Absorber --- p.44 / Chapter 5.2 --- Tunability --- p.45 / Chapter 5.3 --- Theoretical Understanding on the Results --- p.46 / Chapter 5.4 --- Other EM modes Involved --- p.49 / Chapter 5.5 --- Structural Flexibility --- p.54 / Chapter 6 --- Sample Preparation Techniques --- p.57 / Chapter 6.1 --- Interference Lithography --- p.57 / Chapter 6.1.1 --- Basic Principle of IL --- p.58 / Chapter 6.1.2 --- Experimental Setup for IL --- p.59 / Chapter 6.1.3 --- Experimental Procedures for IL --- p.60 / Chapter 6.1.4 --- Tuning the Period --- p.61 / Chapter 6.1.5 --- Tuning Grating Width --- p.62 / Chapter 6.1.6 --- Tuning the grating height --- p.64 / Chapter 6.2 --- Sputtering --- p.65 / Chapter 6.2.1 --- Description of Sputtering System --- p.65 / Chapter 6.2.2 --- Effect of Varying the Position on Sample Holder --- p.66 / Chapter 6.3 --- Chemical deposition of silver --- p.69 / Chapter 7 --- Sample Characterization Techniques --- p.72 / Chapter 7.1 --- Scanning Electron Microscope --- p.72 / Chapter 7.1.1 --- Grating width measurement --- p.72 / Chapter 7.1.2 --- Sidewall Coverage Measurement --- p.73 / Chapter 7.2 --- Thickness Measurement --- p.74 / Chapter 7.3 --- Reflectance Measurement --- p.75 / Chapter 7.3.1 --- Experimental Setup --- p.76 / Chapter 7.3.2 --- Use of Prism --- p.79 / Chapter 8 --- Experimental Realization of All-Direction Light Absorber --- p.82 / Chapter 8.1 --- Reflectance of Glass Substrate --- p.82 / Chapter 8.2 --- Planar Metal-SU8-Metal Systems --- p.87 / Chapter 8.3 --- SU8 Grating on Glass Substrate --- p.89 / Chapter 8.4 --- SU8 Grating on Gold Substrate --- p.92 / Chapter 8.4.1 --- Grating on a Thick Layer of Gold --- p.93 / Chapter 8.4.2 --- Grating on a Thin Layer of Gold --- p.93 / Chapter 8.5 --- Cavities-Embedded Systems and Future Work --- p.96 / Chapter 8.6 --- Summary and Future Experimental Work --- p.100 / Chapter 9 --- Conclusion --- p.102 / Chapter A --- Notes on Glass Cleaning --- p.104 / Chapter B --- An Experiment on Sidewall Coverage --- p.107 / Bibliography --- p.109

Page generated in 0.0996 seconds