• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Modeling and Analysis of a Continuous Process for Hydrogenation of Diene based Polymers using a Static Mixer Reactor

Madhuranthakam, Chandra Mouli R January 2007 (has links)
Hydrogenated nitrile butadiene rubber (HNBR) which is known for its excellent elastomeric properties and mechanical retention properties after long time exposure to heat, oil and air is produced by the catalytic hydrogenation of nitrile butadiene rubber (NBR). Hydrogenation of NBR is carried out preferably in solution via homogeneous catalysis. As yet, it is being commercially produced in a semi-batch process where gaseous hydrogen continuously flows into a batch of reactant polymer. Several catalysts have been exploited successfully for the hydrogenation of NBR in organic solvents, which include palladium, rhodium, ruthenium, iridium and osmium complexes. Owing to the drawbacks of batch production (such as time taken for charging and discharging the reactants/products, heating and cooling, reactor clean up), and the huge demand for HNBR, a continuous process is proposed where potential time saving is possible in addition to the high turn over of the product. Numerical investigation of the HNBR production in a plug flow reactor and a continuous stirred tank reactor showed that a reactor with plug flow behavior would be economical and efficient. A static mixer (SM) reactor with open-curve blade internal geometry is designed based on the simulation and hydrodynamic results. The SM reactor was designed with 24 mixing elements, 3.81 cm ID and 90 cm length. The reactor has a jacket in which steam is used to heat the polymer solution. The hydrodynamics in the SM reactor (open-flat blade structure) with air-water system showed that plug flow could be achieved even under laminar flow conditions (Reh < 20). For a constant mean residence time, the Peclet number was varying such that it is 4.7 times the number of mixing elements (ne) used in the SM reactor. Empirical correlations were developed for gas hold up (εG) and overall mass transfer coefficient (KLa). The mass transfer experiments showed that high KLa, 4 to 6 times compared to that of the conventional reactors could be achieved in the SM reactor at particular operating conditions. Very important information on the Peclet number, liquid hold were obtained from the hydrodynamic experiments conducted with the actual working fluids (hydrogen, polymer solutions) in the SM reactor. The superficial gas velocity had an adverse effect on both Peclet number and liquid hold up. The viscosity of the polymer solution also had a marginal negative effect on the Peclet number while a positive effect on the liquid hold up. The hydrogenation performance with the homogeneous catalyst OsHCl(CO)(O2)(PCy3)2 was performed in the continuous process with SM reactor. Complete hydrogenation of NBR was possible in a single pass. The effect of mean residence time, catalyst and polymer concentration on the final degree of hydrogenation was studied. The minimum catalyst required to achieve degree of hydrogenation over 97% was empirically found and an empirical correlation was developed for degree of hydrogenation as a function of operating conditions and parameters. Hydrogenation in the SM reactor is modeled by using plug flow with axial dispersion model that is coupled with the concentrations of carbon-carbon double bond, hydrogen and osmium catalyst. The model involves coupled, non-linear partial differential equations with different dimensionless parameters. The proposed model was verified with the experimental results obtained from the hydrogenation and hydrodynamic experiments. The model could satisfactorily predict the degree of hydrogenation obtained from experimental results at various operating conditions. In general, the designed continuous process with SM reactor performed well and was an effective method of manufacturing HNBR on a continuous basis. The designed system is amicable to the industrial operating conditions and promises to be highly efficient and economic process for production of HNBR.
2

Design, Modeling and Analysis of a Continuous Process for Hydrogenation of Diene based Polymers using a Static Mixer Reactor

Madhuranthakam, Chandra Mouli R January 2007 (has links)
Hydrogenated nitrile butadiene rubber (HNBR) which is known for its excellent elastomeric properties and mechanical retention properties after long time exposure to heat, oil and air is produced by the catalytic hydrogenation of nitrile butadiene rubber (NBR). Hydrogenation of NBR is carried out preferably in solution via homogeneous catalysis. As yet, it is being commercially produced in a semi-batch process where gaseous hydrogen continuously flows into a batch of reactant polymer. Several catalysts have been exploited successfully for the hydrogenation of NBR in organic solvents, which include palladium, rhodium, ruthenium, iridium and osmium complexes. Owing to the drawbacks of batch production (such as time taken for charging and discharging the reactants/products, heating and cooling, reactor clean up), and the huge demand for HNBR, a continuous process is proposed where potential time saving is possible in addition to the high turn over of the product. Numerical investigation of the HNBR production in a plug flow reactor and a continuous stirred tank reactor showed that a reactor with plug flow behavior would be economical and efficient. A static mixer (SM) reactor with open-curve blade internal geometry is designed based on the simulation and hydrodynamic results. The SM reactor was designed with 24 mixing elements, 3.81 cm ID and 90 cm length. The reactor has a jacket in which steam is used to heat the polymer solution. The hydrodynamics in the SM reactor (open-flat blade structure) with air-water system showed that plug flow could be achieved even under laminar flow conditions (Reh < 20). For a constant mean residence time, the Peclet number was varying such that it is 4.7 times the number of mixing elements (ne) used in the SM reactor. Empirical correlations were developed for gas hold up (εG) and overall mass transfer coefficient (KLa). The mass transfer experiments showed that high KLa, 4 to 6 times compared to that of the conventional reactors could be achieved in the SM reactor at particular operating conditions. Very important information on the Peclet number, liquid hold were obtained from the hydrodynamic experiments conducted with the actual working fluids (hydrogen, polymer solutions) in the SM reactor. The superficial gas velocity had an adverse effect on both Peclet number and liquid hold up. The viscosity of the polymer solution also had a marginal negative effect on the Peclet number while a positive effect on the liquid hold up. The hydrogenation performance with the homogeneous catalyst OsHCl(CO)(O2)(PCy3)2 was performed in the continuous process with SM reactor. Complete hydrogenation of NBR was possible in a single pass. The effect of mean residence time, catalyst and polymer concentration on the final degree of hydrogenation was studied. The minimum catalyst required to achieve degree of hydrogenation over 97% was empirically found and an empirical correlation was developed for degree of hydrogenation as a function of operating conditions and parameters. Hydrogenation in the SM reactor is modeled by using plug flow with axial dispersion model that is coupled with the concentrations of carbon-carbon double bond, hydrogen and osmium catalyst. The model involves coupled, non-linear partial differential equations with different dimensionless parameters. The proposed model was verified with the experimental results obtained from the hydrogenation and hydrodynamic experiments. The model could satisfactorily predict the degree of hydrogenation obtained from experimental results at various operating conditions. In general, the designed continuous process with SM reactor performed well and was an effective method of manufacturing HNBR on a continuous basis. The designed system is amicable to the industrial operating conditions and promises to be highly efficient and economic process for production of HNBR.
3

Aplicação da radiação gama para incorporação do pó de borracha em formulações de borracha EPDM e nitrílica / Application of gamma irradiation for incorporation of rubber powder in the formulations EPDM and NBR rubber

KIYAN, LUDMILA de Y.P. 19 December 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-12-19T17:14:06Z No. of bitstreams: 0 / Made available in DSpace on 2014-12-19T17:14:06Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
4

Aplicação da radiação gama para incorporação do pó de borracha em formulações de borracha EPDM e nitrílica / Application of gamma irradiation for incorporation of rubber powder in the formulations EPDM and NBR rubber

KIYAN, LUDMILA de Y.P. 19 December 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-12-19T17:14:06Z No. of bitstreams: 0 / Made available in DSpace on 2014-12-19T17:14:06Z (GMT). No. of bitstreams: 0 / A decomposição natural da borracha é muito lenta, devido às suas estruturas vulcanizadas serem extremamente reticuladas formando uma rede tridimensional, tornando o reprocessamento desse material extremamente difícil. O presente trabalho tem como principal objetivo o estudo da aplicação da radiação gama como forma de desvulcanização para a reciclagem/reaproveitamento. Foi avaliada a interação de elastômeros com a radiação ionizante de fonte gama investigando-se as alterações nas propriedades físico-químicas dos materiais. Foram utilizadas formulações de borracha NBR (copolímero de Acrilonitrila-Butadieno) e EPDM (terpolímero etileno-propileno-dieno), provenientes da indústria de borracha, reticuladas por mistura convencional à base de enxofre. Foram preparados master-batch com pó de borracha (refugo industrial) e borracha virgem. O material processado (master-batch) foi irradiado em fonte de 60Co nas doses de 50, 100, 150 kGy e taxa de dose de 5 kGy h-1, à temperatura ambiente. O material irradiado foi incorporado nas formulações clássicas à base de enxofre. As formulações foram caracterizadas por: espectroscopia no infravermelho (FTIR), análise térmica (TG e DTG), tensão na ruptura, alongamento na ruptura, dureza, resistência à abrasão, reometria e inchamento. Os resultados mostraram uma predominância de cisão de cadeia na dose de 50 kGy para a borracha EPDM. Para a borracha nitrílica foi observada a predominância de cisão de cadeia na dose de 100 kGy. Estes resultados mostram a possibilidade do uso da radiação gama para o reaproveitamento/reciclagem das borrachas EPDM e nitrílica. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
5

Preparação, irradiação e caracterização de blendas PEAD reciclado/EPDM / Preparation, irradiation and characterization of recycled HDPE/EPDM blends

GABRIEL, LEANDRO 22 December 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-12-22T16:34:05Z No. of bitstreams: 0 / Made available in DSpace on 2016-12-22T16:34:05Z (GMT). No. of bitstreams: 0 / A reciclagem de refugos é um processo estratégico que viabiliza a expansão do mercado de plásticos, podendo gerar novos produtos. A obtenção de blendas poliméricas é uma alternativa nesse processo, já que é conhecida a perda de propriedades mecânicas dos termoplásticos nas etapas de reprocessamento. Neste trabalho, o polietileno de alta densidade (PEAD) reciclado teve adições de borracha do monômero etileno-propileno-dieno (EPDM) puro em baixos teores (1 %, 5 % e 10 %), cujo objetivo foi formar blendas miscíveis e um produto final mais resistente ao impacto. O PEAD foi submetido a quatro ciclos de moagem, extrusão e injeção (reprocessamento) e misturado ao EPDM puro por extrusão sem o uso de qualquer aditivo. Os grânulos da blenda formada foram usados para confeccionar os corpos-de-prova por injeção para seu uso nas distintas metodologias analíticas. O processo de irradiação gama foi aplicado nas doses de 50 kGy e 100 kGy e os parâmetros físico-químicos e mecânicos dessas amostras foram comparados aos das não irradiadas. Tanto as blendas irradiadas como as não irradiadas mostraramse visualmente e microscopicamente homogêneas, indicando a compatibilidade da mistura, que também é verificada por seu comportamento térmico. Os parâmetros mecânicos provenientes dos ensaios de tração e flexão, foram semelhantes nas amostras do termoplástico virgem e do reciclado; o processo de irradiação nas blendas gerou sua reticulação, sendo esta verificada não só pelo aumento dos valores desses parâmetros como também pelo aumento da fração gel. A resistência ao impacto aumentou cerca de duas vezes e meia nas amostras com maior teor de EPDM e cerca de 6 a 7 vezes nestas mesmas amostras irradiadas a 50 kGy e 100 kGy respectivamente. O novo material obtido tem fortes indicativos para a sua utilização na pequena e média indústria de plástico, uma vez que já com 1 % de EPDM apresentam melhores características mecânicas em relação ao termoplástico reciclado quatro vezes e essas características foram incrementadas após o processo de irradiação gama. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0567 seconds