• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 16
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 29
  • 22
  • 18
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mechanisms of soot transfer to oil of an HPCR diesel engine

Di Liberto, Gianluca January 2017 (has links)
High levels of soot-in-oil can cause an increase in engine wear and oil viscosity, thus reducing oil drain intervals. The mechanisms by which soot particles are entrained into the bulk oil are not well understood. The research reported in this thesis addresses questions on the mechanisms of soot transfer to the lubricating oil in light-duty diesel engines with high pressure EGR systems. Deposition as a result of blow-by gas passing the piston ring pack and by absorption to the oil film on the cylinder liner via thermophoresis are soot transfer mechanisms that have been considered in detail. The investigations are based on analytical and simulation studies, and results based on complementary experimental studies are used to validate these. The experimental investigations aimed at evaluating the typical rate of accumulation and size distribution of soot agglomerates in oil. The oil samples analysed were collected during regular services from light-duty diesel engine vehicles. These were representative of vehicles meeting Euro IV and V emission regulation standards driven under real-world conditions. The rate of soot-in-oil was determined by thermogravimetric analysis and results showed a concentration of approximately 1 wt% of soot-in-oil after 15,000 km. The particle size distribution was determined using a novel technique, Nanoparticle Tracking Analysis (NTA), applied for the first time to soot-laden oil samples by the author [1, 2]. Results showed an average particle size distribution of 150 nm, irrespective of oil drain interval. Almost the totality of the particles were between 70 and 400 nm, with micro particles not detected in any of the samples analysed. For the samples investigated in this work, the Euro standard did not influence either the rate of soot deposition or the particles size distribution. To the author’s best knowledge, this is the first time that rate of soot deposition and particles size distribution from oil samples collected from vehicles of different Euro standard driven under real-world conditions are analysed and compared. Exhaust Gas Recirculation (EGR) is a common technique used in diesel engines in order to reduce NO¬x emissions. However, it has the drawback that it increases the production of soot. In this work, particular attention has been given to its effects on the rate of soot deposition in oil. Both its influence on the soot produced during the combustion process and on the soot re-introduced in the combustion chamber by the EGR gas has been investigated through CFD simulations using Kiva-3V. Examining the relative importance of near–surface transport of soot by thermophoresis to the oil film on the liner and from blow-by gases to surfaces in the ring pack shows the former to be the dominant mechanism of soot transfer. EGR increases the rate of deposition of soot on the liner not only by increasing net production of soot, but also through the re-cycled particles. At EGR levels higher than 20%, the contribution of the Re-cycled soot becomes the major source for soot-in-oil. The study of soot deposition was evaluated during the entire engine cycle, including compression stroke and post-Exhaust Valve Opening (EVO) period. Existing deposition models found in the literature typically limit the domain to only from the Start of Injection (SOI) to (EVO) period [3-5]. Results from this thesis indicated that compression stroke and post-EVO period can contribute up to 30% of the total rate of soot deposition into oil.
32

Avaliação da utilização do atual Diesel (combustível) comercial brasileiro (ano de referência 2003-2004) para motores com gerenciamento eletrônico de combustível e sistema de recirculação de gases de escape (EGR), certificados pela legislação EPA, 2004

Marques Neto, José Antonio [UNESP] 12 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-12Bitstream added on 2014-06-13T20:20:28Z : No. of bitstreams: 1 marquesneto_ja_me_guara.pdf: 2657633 bytes, checksum: e824dc881fb4b2eaa808d2c738760971 (MD5) / O Brasil é um país que segue, como padrão de referência para emissões, as normas européias que diferem das norte americanas em função dos limites e dos ciclos de teste. Com a globalização e comunização de componentes, objetiva-se desenvolver um único produto que possa ser empregado em diversas partes do mnndo e que apresente uma condição adequada e suficiente para uma aplicação que possa variar das altas atitudes e clima frio do Chile, até as altas temperaturas dos desertos da Arábia Saudita. Muitos desenvolvimentos de motores devem ser acompanhados da evolução da qualidade do combustível, o qual influencia diretamente no desempenho e durabilidade dos motores. Logo uma avaliação das emissões de um motor, o qual o princípio empregado para redução de emissões, está previsto para ínicio de comercialização no Brasil a partir de 2008, torna-se uma ferramenta importante para o desenvolvimento de veículos ecologicamente corretos. Paralelamente está previsto também uma melhora na composição do combustível; pode-se então dizer que, se as emissões com o atual combustível no Brasil forem inferiores aos limites programados para o ano de 2008, isto indicará que teremos um motor que irá emitir menos, quando considerada a qualidade do combustível otimizado. Concluindo, o presente trabalho possui grande importância tecnológica e estratégica para o desenvolvimento de motores Diesel além de sistemas e agregados para se reduzir emissões dentro do grupo mundial DaimlerChrysler. / The Brazil is a country, which follows the same European emissions standard for thelimits and tests, however the current legislation in Europe will come to Brazil one step later. It means about 4 years later. With globalization, the industries are looking for costs reducing and one necessary way to get it is to have one product or, in this case one vehicle, that could be sold in different countries, foruse in high altitude and cold wheter like in chile and in high temperatures as in the Arabic deserts. Many engine developements should be made at the same time with fuel quality improvement, which has directly influence about performance and durability of the engine components. Because of it, the correct exhaust gas emissions evaluation of the high technology engine in Brazil is a very important factor to signalize the strategy for the next emissions legislation. The principal focus of this monograph is the analysis of the engine for 2008 in Brazil, now in 2003 and receive the information to prepare the Brazilian scenaio for the next years. The subject of this case is the testing of the current different kinds of Diesel fuel in Brazil determining the emissions values freom the engine EPA 2004 and with these values comparing them to the standard emission limits and explain about the comparability of results. To sum up, the current monograph has great technological and strategical importance to the Diesel engine development and also the development of aggregates and systems for emissions reducing into Daimler-Chrysler worldwide group.
33

Combustion aided by a glow plug in diesel engines under cold idling conditions

Li, Qile January 2016 (has links)
Glow plugs are widely used to promote the desired cold start and post-cold start combustion characteristics of light duty diesel engines. The importance of the glow plug becomes more apparent when the compression ratio is low. An experimental investigation of combustion initiation and development aided by the glow plug has been carried out on a single cylinder HPCR DI diesel engine with a low compression ratio of 15.5:1. High speed imaging of combustion initiated by the glow plug in a combustion bomb has been used to add understanding of initiation process. Complementary CFD studies have been carried out using ANSYS Fluent 14.0 to explore the interactions between the glow plug and the spray behavior. Observation of successful combustion initiation show that two conditions must be met, compression heating and heat transfer from the glow plug must raise temperature of gas nearby to at least 413ºC and the vapour/air equivalence ratio no lower than 0.15-0.35. The initiation site was at spray edge close to the glow plug, the flame grew locally before expanding downstream in direction of spray penetration after the end of the main injection. Experimental studies carried out on the engine indicated that the engine IMEP, heat release and combustion stability were continuously improved by using the glow plug at ambient temperatures higher than the temperature requiring the glow plug for initiation of combustion. A rapid development of premixed combustion was achieved associated with improved engine work output, heat release rate and cycle-by-cycle stability. The premixed combustion was enhanced by strengthening spray vaporization through the glow plug. In this study, the combustion behavior was enhanced by the glow plug up to ambient temperature of 20ºC. Initiation delay was shortened by a rapid development of combustion aided by the glow plug. An initiation delay model was developed to account for both physical part (transport delay) and chemical part (chemical delay). The transport delay (ms) is equivalent to the time for spray to transport to the vicinity of the glow plug, dictated by parameters including S, distance between the glow plug tip and the injector tip (mm).
34

Radial, vaneless, turbocharger turbine performance

Dale, Adrian Peter January 1990 (has links)
No description available.
35

Characterisation of diesel injector deposits using advanced analytical techniques

Angel-Smith, Sarah Jane January 2018 (has links)
Internal diesel injector deposits (IDIDs) have become a prolific issue in the last decade, increased number of incidences have occurred since the introduction of ultra-low sulfur diesel and biodiesel. The IDIDs have caused concerns for customers such as injector systems misfiring or blocking, increased emissions and fuel consumption. Interest into the origins of the deposits has steadily grown, with identified possible causes including contaminants, degraded additives, or thermal and pressure stresses of the engine. Most examples in previous studies only provide surface analysis of IDIDs, however, the surface only provides a relatively small part of the story. In order to understand how an IDID has formed the history needs to be explained, to do this the lower layers of the IDID need to be analysed. Outcomes of this research include the first example of focused ion beam and secondary ion mass spectrometry being used in combination to analyse IDIDs and clearly shows different chemical layers, demonstrating that these deposits are made up of multiple complex chemistries. Raman spectroscopy can provide graphitic content information for IDIDs giving evidence of formation however, a method to remove fluorescence from carbonaceous structures was first devised and validated in order to allow this to be performed. The jet fuel thermal oxidation test (JFTOT) has been proven to be an effective method of replicating deposits on comparison with IDIDs from failed field engines, and key chemistries have been identified for B20 biodiesel and ultra-low sulfur diesel (ULSD). This work has used existing analytical methods to understand IDIDs and found novel insights that have not been previously observed in the literature.
36

Metal modified mesoporous ZSM-5 as catalysts for the oligomerization of 1- hexene

Mlimi, Kenneth Mpemane January 2021 (has links)
>Magister Scientiae - MSc / The use of diesel engines in vehicles and heavy machinery throughout the world has been slowly increasing in the past few decades. This has led to high demand for diesel and gasoline with high octane number. Diesel and gasoline are in high demand due to its qualities as fuels containing low or no sulfur and nitrogen compounds, making them environmentally friendly and the anti- knocking properties respectively. With these reasons and more, researchers have been studying processes like the catalytic oligomerization of olefins to produce synthetic fuels with augmented qualities and properties. The effectiveness of the process will depend on the quality of the catalyst.
37

Projeto e fabricação de dispositivo de fixação de cabeçotes e abertura de válvulas em equipamento de medição de Swirl. / Project and manufacturing of a fixation and valve lift device for cylinder heads in a Swirt measurement equipment.

Tanaka, Alexandre Tomio 11 August 2017 (has links)
Neste trabalho pretende-se desenvolver o dispositivo para a fixação de cabeçotes e acionamento de válvulas em um equipamento para medição de swirl, que é um dos movimentos do ar dentro da câmara de combustão nos motores de ignição por compressão. Este desenvolvimento tem como objetivos facilitar a montagem do cabeçote no equipamento e desenvolver o avanço automático das válvulas, visando a redução do tempo total do ensaio. No desenvolvimento, foi feito um comparativo das características e componentes montados nos cabeçotes e nos diferentes modelos que serão testados no equipamento, para que não fossem necessários retrabalhos no cabeçote ou desmontagens de componentes para a realização dos ensaios, abrangendo a maior gama possível de produtos. Foram definidos os métodos de posicionamento do cabeçote no dispositivo e o sistema de fixação. Para garantir a precisão no acionamento das válvulas, foi definido um fuso de esferas recirculantes, acionadas por um motor de passo. O projeto foi concluído e o dispositivo foi fabricado e instalado no equipamento de medição. Testes realizados mostraram resultados de medição de swirl conforme esperado, além da diminuição no tempo total do teste. A partir de observações feitas após a fabricação e os testes no dispositivo, algumas melhorias estão sendo propostas, como, por exemplo, acionamentos por balancins independentes para cada válvula. / In this work, the aim is to develop the device for the fixture of the cylinder head and the valve actuation in a swirl meter test bench. Swirl is a movement inside the combustion chamber in a compression ignition engine. The development aims to facilitate the assembling of the cylinder head in the equipment and develop the valve lift device, focusing in decreasing the total time for the test. Also, the valve actuator shall be able to perform the continuous valve lift in the swirl measurement. During the development of this work, a comparative of the main features and the components assembled in the different cylinder head types to be tested in the equipment was done, to avoid rework or disassembling of components for the test, including the most variety of types. It was defined the positioning method for cylinder head in the device and the fixation system. To ensure the precision in the valve actuation, it was defined a ball screw, driven by a step motor. The project was finalized, manufactured and installed in the measurement equipment. Performed tests have showed results of swirl measurement according to expected, and the total time of test was decreased. After this first project, some improvements are proposed in the device, for example, individual actuation per valve.
38

Engine cylinder pressure reconstruction using crank kinematics, block vibrations, and time-delay neural networks

Trimby, Stuart January 2016 (has links)
Time-delay feed-forward Artificial Neural Networks are examined for gasoline engine cylinder pressure reconstruction using both measured crank kinematics obtained from a shaft encoder, and measured engine cylinder block vibrations obtained from a production knock sensor. Initially, the study focuses on the information content associated with measured data, which is considered to be of equal importance to the particular network architecture and the training methodology. Several hypotheses are constructed, which when tested, reveal the influence of the data information content on the reconstruction potential and limitations. These hypotheses are tested on real data from a 3-cylinder (DISI) engine. Three distinct ideas emerge through this testing process, which are combined to produce a single pressure reconstruction methodology. Reconstruction results obtained via this methodology, applied to crank kinematics associated with steady-state engine operation, show a marked improvement over previously published reconstruction accuracy. Moreover, in steady-state engine operation, the application of this methodology to acceleration measurements of cylinder block vibration, obtained from a knock sensor, show very significant improvements over previous attempts. But the direct application of this same reconstruction methodology to transient engine operation, proves to be problematic. However, a novel generalisation of the approach in the form of a time-dependent feed-forward neural network is proposed and the required adaptation made to the use of the Levenberg-Marquardt training algorithm. This time-dependent approach has been tested under limited transient conditions and shown in the thesis to give good results, therefore offering considerable potential for use with real engine operation. Overall, the thesis shows that by careful processing of measured engine data, standard neural network architectures and standard training algorithms can be used to reconstruct engine cylinder pressure.
39

Investigations of advanced injection and combustion strategies on DI diesel engine performance and emissions

Mobasheri, Raouf January 2012 (has links)
The main driving force behind this research was the need for cleaner and more efficient engines to meet the ever-increasing demands on the modern automobile's emissions. In recent years different studies have been carried out to analyze the combined effects of high-pressure injection, boost pressure, multiple injections, included spray angle and combustion chamber geometry. Though considerable research has shown these technologies can meet the low emission regulations, the careful optimization of the engine operating conditions is still required in order to get the full benefit of the different strategies. With these issues as motivation, the first important objective of this study was to gain a detailed understanding of the mechanisms through which fuel injection interacts with other engine parameters and influences diesel combustion and emissions, and hence to attempt to generalize the adoption of multiple injection strategies with regards to improving diesel engine performance. For this purpose, a modified parameter called “Homogeneity Factor of in-cylinder charge” (HF) was introduced and proposed as a new measure in combustion theory to analyze the combustion characteristics and air-fuel mixing process of diesel engines in more detail. The second part of this research builds upon a detail investigation on the included spray cone angle concept and explores further their use in conjunction with multiple-injection strategies in diesel engines. In addition, an investigation was performed in third phase of this research to analyze the effects of piston geometry on combustion, performance and exhaust emission characteristics. The results showed that employing a post-injection combined with a pilot injection results in reduced soot formation from diffusion combustion and enhances the soot oxidation process during the expansion stroke, resulting in decreased soot emissions, while the NOx concentration is maintained in low levels. It was also found that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with advanced injection strategies. Moreover, the results confirmed that a narrower width of piston bowl has a higher unburned fuel air mixture region and hence results in higher soot emissions but with slightly larger piston surface area the optimum operating point could be obtained.
40

Transient modelling of a diesel engine and air-path control

Cheng, Li January 2015 (has links)
Due to the inherent nonlinearity of the diesel engine, real-time control of the variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR) valve still remains a challenging task. A controller has to be capable of coping with the transient operating condition of the engine, the interactions between the VGT and EGR, and also the trade-off effect in this control problem. In this work, novel real-time fuzzy logic controllers (RFLC) were developed and tested. Firstly, the proposed controllers were calibrated and validated in a transient diesel engine model which was developed and validated against the Caterpillar 3126B engine test bed located at the University of Sussex. The controllers were then further tested on the engine test bed. Compared to conventional controllers, the proposed controllers can effectively reduce engine emissions as well as fuel consumption. Experimental results show that compared to the baseline engine running on the Nonroad Transient Cycle (NRTC), mean values of the exhaust gas opacity and the nitrogen oxides (NOx) emission production were reduced by 36.8% and 33%, respectively. Instant specific fuel consumption of the RFLC engine was also reduced by up to 50% compared to the baseline engine during the test. Moreover, the proposed fuzzy logic controllers can also reduce development time and cost by avoiding extensive engine mapping of inlet air pressure and flow. When on-line emission measurements were not available, on-board emission predictors were developed and tested to supply the proposed fuzzy logic controller with predictions of soot and NOx production. Alternatively, adaptive neuro fuzzy inference system (ANFIS) controllers, which can learn from fuzzy logic controllers, were developed and tested. In the end, the proposed fuzzy logic controllers were compared with PI controllers using the transient engine model.

Page generated in 0.0453 seconds