• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methyl, ethyl and butyl soybean oil esters : alternative fuels for compression ignition engines

Wagner, Larry E. January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
2

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine

Unknown Date (has links)
This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce fuels without redesigning any of the engine technology present today, yet allowing for green house emissions to decrease. Bio-diesel is one of these types of emerging bio-fuels, which has an immediate alternative fuel aspect to it, while providing a decrease in green house emissions, as well as a solution to recycling used Waste Vegetable Oils which are other wise disposed. This study shows how by blending bio-diesel with petroleum diesel at intervals of B5, B10, B15, and B20 decrease green house emissions can significantly while maintaining similar performance output and efficiency with respect to 100% petroleum diesel. / by Sergio Bastiani. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
3

Performance testing of a diesel engine running on varying blends of jatropha oil, waste cooking oil and diesel fuel

Sinuka, Yonwaba January 2016 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2016. / The high cost of fossil fuels and the fact that the world has arguably reached its peak oil production, has driven the need to seek alternative fuel sources. The main objective of the current study is to determine the performance of a laboratory-mounted diesel engine when fuelled with varying laboratory prepared biofuel and biodiesel and whether the advancement of the injection timing parameters will improve the engine power output and improve the smoke effect of these different fuel blends. The laboratory prepared biofuels used in this project range from 100% bio-fuel (BF100) to 50%, 30% and 10% biodiesel blends (BF50, BF30 and BF10, respectively). It should be noted that these blends are not commercially available, since they were blended in the laboratory specifically for these tests. The overall results of the study show that there is a distinct opportunity for using certain bio-fuel blends in specific applications as the power outputs are no more than one quarter less than that of base diesel. Concomitantly, the smoke opacity in all of the blends is lower than that of base diesel, which is a significant benefit in terms of their overall air emissions.
4

An analysis of the influence of phosphorus poisoning on the exhaust emission after treatement systems of light-duty diesel vehicles

Toral del Rio, Maria Isabel January 2007 (has links)
Climate change has become a discussion topic of exponentially increasing urgency and importance amoung world leaders of all disciplines. These changes are brought about by the emission of so-called Greenhouse gases from various human activities. The primary cause of CO2 emissions is the burning of the Earth’s supply of nonrenewable natural fossil fuels like coal, oil and natural gas. The world first agreed on the prevention of “dangerous” climatic changes at the Earth Summit in 1992. The Kyoto Protocol of 1997 was the first step toward protection of the atmosphere and prescribes restrictions on emission pollutants. Since then the vehicle gas emissions are being controlled by means of different gas emissions norms, like the European Union Norm in Europe. The automotive manufacturers and suppliers are collectively working on reducing overall vehicle emissions. They are focusing on several different emission limiting possibilities, for example improved engine design, special fuel development and exhaust gas treatment systems. The exhaust gas treatment process requires continuous controlling and management of the exhaust gas emissions while driving a vehicle. Certain factors such as high emission temperatures have a negative influence on the life span of these systems. Their functionality and durability is also known to be reduced by the presence of chemical poisoning species like sulphur, phosphorus, zinc and calcium. The chemical poisoning species are produced during combustion of fuel and engine oil. They are therefore contained in the exhaust emissions and can poison the catalyst when passing over it. Phosphorous poisoning is particularly problematic and should be reduced considerably. This study involves the investigation of the phosphorous poisoning process and aims to provide clarity regarding the influences of different fuel and oil compositions on the severity of the process. Engine oil and biodiesel are two major sources of phosphorous poisoning. The phosphorus contained in biodiesel fuel is a natural component and can be minimized during the refining procedure. In contrast to others studies, the biodiesel fuel used during this project was SME (Soya Methyl Ester) with a 20% biodiesel content. This choice of fuel was made because of the increasingly important role that this type of biodiesel is playing in the European market and the future tendency to increase the percentage of biodiesel in the mixture with standard diesel fuel. The phosphorus contained in engine oil is a necessary additive to retain the antioxidant and anti-wear properties of the oil. This study examined the poisoning influences from the most commonly used phosphorus containing oil additive, Zinc Dithiophosphates (ZDDP), as well as a Zn-free, phosphorus containing anti-wear oil additive. This formulation provides information about the phosphorus poisoning process as caused by the engine oil in the absence of Zn in the oil additives. The results show how the phosphorus content in biodiesel fuel affects the functionality of the exhaust gas treatment systems and the importance of reducing the permitted content of phosphorus contained in the fuel. Reducing the phosphorus content in the fuel will conserve the functionality of the exhaust gas treatment systems during their operational life and thereby protect the environmental from emission pollutants. It also provides insight into the differences in the poisoning processes when the phosphorus deposited on the catalyst comes from biodiesel fuel and when it comes from the engine oil. Finally the results also illustrate the influence of different phosphorous forms contained in engine oil additives on the catalyst poisoning process. This information could be used for the development of new oil additive formulations.
5

The future and outlook of alternative fuel bus industry and its marketing strategy

Chien, Jui-Yu 01 January 2002 (has links)
According to the current governmental regulations, all diesel buses will be replaced in the United States and the European market within the next ten years. There are over 60,000 buses in the United States and each year over 3,000 new buses of approximately 40 feet in length are purchased. The bus market has a growth rate of four to five percent per year over the last two years. The improvements in technology offered by United States companies prove unsatisfactory in terms of bus performance and the emissions of new buses. The energy crisis in the United States and concern over the health hazards of the diesel fuel exhaust gases and particulates, alternative fuel vehicles are in great demand in the transit market world wide.
6

Evaluating the Economic Feasibility of Canola Biodiesel Production in North Dakota

Tapasvi, Dhruv, 1981- January 2006 (has links)
Numerous factors have pushed energy from biomass to the forefront of policy and industry discussions. Large harvests of traditional crops, low farm prices, dependence on foreign energy sources, and environmental problems have increased interest in renewable energy sources. Tools are needed to evaluate and compare different available feedstocks and to identify parameters and modifications for the production of renewable fuels such as biodiesel. The first paper examines the development of a biodiesel process model using commonly available spreadsheet software and process-engineering principles. The basis of the model is a continuous process with two stirred-tank reactors and sodium methoxide catalysis. The process is modeled as 27 units with 51 flows and 18 components. Mass flow rates and compositions of the process input and output streams are quantified using mass and component balances, energy balances, stoichiometric relations, and established process parameters. Oil composition and rate, methanol:triglyceride ratio, and expected transesterification of triglyceride are the user-specified inputs in the model. Based on commonly reported parameters (6: 1 methanol:triglyceride ratio and 98% transesterification) and a basis of 100 kg/h crude soybean oil, the model computes inputs of 13.8, 10.8, and 34.7 (in kg/h) for methanol, 10% sodium methoxide in methanol, and process water, respectively; and outputs of 93.5, 10.3, and 55.6 for soy biodiesel, glycerol, and waste stream, respectively. In the second paper, the mass flow rate data from the developed biodiesel process model are linked to cost data for evaluating the economic feasibility of biodiesel production in North Dakota with canola oil as the feedstock. Estimations of capital investment cost and total annual biodiesel product cost are conducted for two canola biodiesel production plants with 5 and 30 million gallons per year (MGY) capacities. These capacities were selected based on North Dakota and neighboring states' biodiesel demands, respectively. Capital investment cost analysis shows the presence of considerable economies of scale for the biodiesel production process for the two capacities. These cost calculations are based on the purchased equipment cost calculated from the equipment specifications. Total annual biodiesel product cost analysis shows that the major portion (>80%) of the total product cost is the raw material cost, similar to the analysis of previous economic feasibility studies. Cost benefits from the economies of scale are still present for the fixed charges, general expenses, and the manufacturing costs (other than the raw material costs) in the annual product cost calculations for the two production plant capacities. Finally, based on the gross profit evaluation for both plants, this study concludes that it is more worthwhile to invest in the 30 MGY production plant because of the greater cost returns from the economies of scale benefits. The results are more encouraging after the incorporation of the federal biodiesel tax incentive and favor the investment for biodiesel production in North Dakota. / North Dakota. Agricultural Experiment Station / USDA-CSREES (under Agreement No. 2003-34471-13523)
7

Environmental Study Of Solid Waste Collection

Maimoun, Mousa Awad 01 January 2011 (has links)
The growing municipal solid waste generation rates have necessitated more efficient, optimized waste collection facilities. The majority of the US collection fleet is composed of diesel-fueled vehicles which contribute significant atmospheric emissions including greenhouse gases. In order to reduce emissions to the atmosphere, more collection agencies are investigating alternative fuel technologies such as natural gas, biofuels (bio-gas and bio-diesel), and hybrid electric technology. This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. This study will evaluate the use of alternative fuels by waste collection vehicles. Lifecycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Moreover, the energy consumption and the tail-pipe emissions of dieselfueled waste collection vehicles were estimated using MOVES 2010a software. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. Finally, the selection of fuel type by the waste collection industry requires consideration of environmental, security, financial, operational, and safety issues. In this study, a qualitative comparison between alternative fuels was performed; a multifactorial assessment of these factors was conducted taking into account the opinion of the waste collection industry of the importance of each factor. Liquid-petroleum fuels have higher life-cycle emissions compared to natural gas; however landfill natural gas has the lowest life-cycle emissions compared to all other fuel categories. Compressed natural gas waste collection vehicles have the lowest fuel cost per collection vehicle mile travel compared to other fuel categories. Moreover, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; iv this generates more emissions than constant speed driving. Finally, the multifactorial assessment indicates that natural gas and landfill gas have better environmental, economical, and energy security performance than current liquid-petroleum fuels.

Page generated in 0.1223 seconds