• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 17
  • 8
  • 4
  • 1
  • Tagged with
  • 70
  • 70
  • 45
  • 23
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Miniature laser scanning micro-endoscopes : multi-modality imaging system and biomedical applications

Wang, Youmin, 1986- 15 July 2013 (has links)
Cancer is a world menace. After years of endeavor seeking the end of it, people started to realize that no matter how powerful the therapy could be, detection at early stage is always a cheaper, easier and more successful solution compared with curative methods for cancer developed onto its advanced stage. However, relatively few early-detection approaches have proven sufficiently effective and practical for mass use as a point-of-care tool. An early-cancer screening tool integrating the desired features of sensitive, informative, portable, and cost-effective is in need for the doctors. The progress in optical imaging and Micro-electro-mechanical system (MEMS) technology offers a promise for an innovative cancer screening alternative that is non-invasive, radiation-free, portable and potentially cost-effective. This dissertation investigates handheld instrumentation as multi-modalities of miniature imaging probes with various designs of MEMS devices, to obtain real-time images of epithelial tissue optical and physiological properties, combining the quantitative advantages of spectral analysis with the qualitative benefits of imaging to distinguish early cancer. This dissertation in sequence presents the handheld instruments in the fashions of Laser-scanning confocal microscopy (LSCM), optical diffuse reflectance imaging, nonlinear optical imaging modalities with their subsequent image-guided managements in oral cancer, skin cancer detection, circulating tumor cell (CTC) imaging, and imaging guided surgeries. One of the main challenges facing miniaturization lies in the mechanism of beam deflection across the sample. This dissertation introduces two generations of MEMS devices desgined, fabricated and incorporated in the imaging probes. A two-axis vertical comb driven silicon micromirror was used in the development of a handheld LSCM for oral cancer detection. Though obtaining numerous advantages, this first generation silicon MEMS micromirror suffers from small aperture size and high voltage requirement for actuation, which result in low collection efficiency in fluorescence imaging and medial safety concerns, respectively. Therefore a stainless steel scanner compatible with electrical discharge machining (EDM) process was fabricated with simplified process, low-voltage magnetic actuation and large fluorescence collection efficiency, with its capability demonstrated in the incorporation and embodiment of a handheld hyperspectral nonlinear imaging probe. Besides, software and controlling innovations for handheld imaging modalities are presented. A feedback controlling system for MEMS scanning status monitoring was developed for stabilized imaging rendering. For the sake of further improved imaging stability in handheld imaging and to enable on-site mosaic for large field viewing, a handheld mosaic system was developed and presented. / text
62

Caractérisation des états excités de complexes de nickel(II) par spectroscopie de réflectivité diffuse et d'absorption à température variable

Prala, Carmen January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
63

Desenvolvimento de procedimentos e métodos analíticos no campo forense aplicando os princípios da química verde / Development of procedures and analytical methods in forensics applying the principles of green chemistry

Luiz, Vitor Hugo Marques [UNESP] 25 February 2016 (has links)
Submitted by VITOR HUGO MARQUES LUIZ null (vitorhmluiz@hotmail.com) on 2016-03-14T14:35:25Z No. of bitstreams: 1 tese Vitor Hugo repositório.pdf: 12742690 bytes, checksum: 808cc9757cd523a743880c2238379bc1 (MD5) / Approved for entry into archive by Sandra Manzano de Almeida (smanzano@marilia.unesp.br) on 2016-03-14T17:09:34Z (GMT) No. of bitstreams: 1 luiz_vhm_dr_araiq_par.pdf: 1804257 bytes, checksum: 83b423fb984c5b0c70d305405ab840c2 (MD5) / Made available in DSpace on 2016-03-14T17:09:34Z (GMT). No. of bitstreams: 1 luiz_vhm_dr_araiq_par.pdf: 1804257 bytes, checksum: 83b423fb984c5b0c70d305405ab840c2 (MD5) Previous issue date: 2016-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho descreve o desenvolvimento de métodos analíticos para a determinação quantitativa de furosemida e bumetanida em amostras de urina utilizando espectroscopia por reflectância difusa (para a furosemida) e por imagem por scanner com quantificação através do histograma de cores utilizando o padrão RGB (para ambas). Envolve também o desenvolvimento de um método quantitativo para a detecção de chumbo em resíduos de armas de fogo (GSR) nas mãos de atiradores utilizando membranas de celulose bacteriana como substrato de coleta, visando o descobrimento do tempo de disparo. Também foi realizada a quantificação de chumbo em amostras de tintura para cabelos utilizando método previamente desenvolvido, visando detecção da adulteração destes produtos e controle de qualidade. Estuda também a potencialidade do uso das membranas de celulose bacteriana para a coleta de impressões digitais. Os métodos desenvolvidos consistem na reação da furosemida (FUR) com o regente cromogênico paradimetilaminocinamaldeído (p-DAC) 0,70% e ácido clorídrico (HCl) 1,72 mol L-1 em papel de filtro qualitativo com barreiras hidrofóbicas, com detecção espectrofotométrica e por histograma de cores; na reação do íon chumbo(II) (Pb2+) com rodizonato de sódio (ROD) 0,16% em meio micelar de dodecil sulfato de sódio (SDS) 5 mmol L-1 em membranas de celulose bacterianas, com detecção espectrofotométrica e por microscopia eletrônica de varredura (MEV); na reação de bumetanida (BMT) com o reagente p-DAC 0,6% e HCl 0,26 mol L-1 em papel de filtro qualitativo com barreiras hidrofóbicas, com detecção por histograma de cores e na coleta de impressões digitais utilizando membrana de celulose bacteriana impregnadas com ninidrina, nitrato de prata ou óxido de zinco, dos quais o nitrato de prata e a ninidrina atuaram como agentes de coleta razoáveis. Todas as concentrações foram otimizadas por planejamentos quimiométricos. As reações foram realizadas na forma de spot test, envolvendo a formação de um produto colorido em 545 nm para o chumbo, em 585 nm para a furosemida e 520 nm para a bumetanida. As curvas analíticas foram contruídas a partir de soluções padrões dos respectivos analitos. Os métodos desenvolvidos para a bumetanida e para a furosemida foram aplicados em amostras de urina sintética e natural fortificadas e os resultados obtidos foram comparados estatisticamente com métodos comparativos. A validação dos métodos foi realizada por adição de padrão e recuperação e por comparação de métodos, no caso da FUR e da BMT, obtendo-se recuperações entre 98,0 e 115,3% para os métodos de quantificação da furosemida e entre 93,0 e 102,0% para o método de quantificação da bumetanida. O método de coleta de GSR é baseado na utilização de membranas finas de celulose bacteriana desenvolvidas pelo Grupo de Materiais Fotônicos do IQ-UNESP.Para os GSR foram realizadas 40 coletas totais em tempos de coleta após o disparo (diferentes e conhecidos), sendo sua comparação realizada através das curvas analíticas, mostrando ser possível a detecção do tempo de disparo com uma margem de erro de aproximadamente 5 minutos. Os resultados foram comparados estatisticamente e os valores obtidos a partir de testes estatísticos mostraram que os métodos podem ser usados para análises de rotina em laboratórios forenses. / This work describes the development of analytical methods for the quantitative determination of furosemide and bumetanide in urine samples using diffuse reflectance spectroscopy (for furosemide) and scanning imaging with quantification by color histogram using RGB color pattern (for both). It involves also the development of a quantitative method for the detection of lead in gunshot residues (GSR) in the hands of the shooters using bacterial cellulose membranes as substrate collection, aiming the discovery of shooting time. It is also done the quantification of lead in progressive hair lotions samples using a previously developed method, aiming the detection of products adulterations and quality control. It also studies the potentiality of the usage of bacterial cellulose membranes for the collection of fingerprints. The developed methods are consisted in the reaction of furosemide (FUR) with the cromogenic reagent p-dimethylamino cinnamaldehyde (p-DAC) 0.70% and hydrochloric acid (HCl) 1.72 mol L-1 in qualitative filter papers with hydrophobic barrier, with spectrophotometric detection and by color histogram; in the reaction of lead(II) ion (Pb2+) with sodium rhodizonate (ROD) 0.16% in micellar medium of sodium dodecyl sulfate (SDS) 5 mmol L-1 in bacterial cellulose membranes with spectrophotometric detection and by scanning electron microscopy; in the reaction of bumetanide (BMT) with the reagent p-dimethylamino cinnamaldehyde (p-DAC) 0.6% and hydrochloric acid (HCl) 0.27 mol L-1 in qualitative filter papers with hydrophobic barrier with color histogram detection an in the collect of fingerprints using bacterial cellulose membranes impregnated with ninhydrine, silver nitrate or zinc oxide, of which the silver nitrate and ninhydrin acted as reasonable collection agents. All concentrations were optimized through chemometrics designs. The reactions were carried out as spot test, involving the formation of a colored product at 545 nm for lead, in 585 nm for furosemide and in 520 nm for bumetanide. Analytical curves were built from standard solutions of the respective analytes. The methods developed for furosemide and bumetanide were applied in fortified synthetic and natural urine samples and the results obtained were compared statistically with comparative methods. The validation of the methods were performed by standard addition and recovery and by comparison of methods, for FUR and BMT, yielding recoveries between 98.0 and 115.3% for furosemide quantification methods and between 93.0 and 102.0% for the quantification method for bumetanide. GSR collection method is based on the use of thin membranes of bacterial cellulose developed by Photonic Materials Group IQ-UNESP. For GSR, 40 total collections were carried out in known and different times of collection after shooting times and their comparison through analytical curves were done, showing the possibility of the detection of the shooting time with an error of 5 minutes, approximately. The results were statistically compared and the values obtained from statistical tests showed that the methods can be used for routine analysis in forensic laboratories.
64

Caractérisation de tissus cutanés par spectroscopie bimodale : Réflectance Diffuse et Raman. / Bimodal spectroscopy for in vivo skin characterization : Diffuse Reflectance Spectroscopy and Raman Spectroscopy.

Roig, Blandine 19 November 2015 (has links)
L'objectif de cette thèse concerne l'association de deux techniques de mesure dans le cadre de la caractérisation in vivo de la peau. La première, nommée Spectroscopie de Réflectance Diffuse (DRS), permet la caractérisation des paramètres optiques de la peau analysée et quantifie les phénomènes d'absorption et de diffusion de la lumière. La deuxième est la microspectroscopie Raman. Elle fournit une identification chimique des composés analysés sans marquage. L'objet de cette thèse est d'évaluer l'effet de l'interaction lumière-matière sur les capacités de localisation et de quantification de la microspectroscopie Raman, lesquelles sont dégradées dans un milieu diffusant tel que la peau. Une approche in vivo bimodale (DRS et Raman) est proposée pour la caractérisation biochimique quantitative des tissus cutanés avec l'idée d'établir un protocole de correction des spectres Raman acquis, en exploitant les propriétés optiques fournies par la DRS. Elle est décomposée en trois axes de travail complémentaires : le développement d'une instrumentation DRS permettant la mesure des spectres de réflectance diffuse et le calcul des propriétés optiques dans la zone sondée par la spectroscopie Raman ; le développement de fantômes optiques permettant une compréhension expérimentale des phénomènes d'absorption, de diffusion élastique et de diffusion Raman; le développement d'un protocole de correction des spectres Raman à partir des propriétés optiques obtenues par DRS. / This thesis relates to the combination of two in vivo skin characterization techniques. On the one hand, Diffuse Reflectance Spectroscopy (DRS) enables skin optical properties characterization by quantifying light absorption and light elastic scattering. On the other hand, Raman microspectroscopy provides information on molecular compositions of tissues with no need of labeling. Localization and quantification functions of Raman microspectroscopy are both distorted in scattering media such as skin. Therefore, the aim of this thesis was to assess the effect of light-matter interactions on these functions. A bimodal method is proposed to achieve quantitative biochemical characterization of cutaneous tissues in vivo. The main idea is to develop a procedure of Raman spectra correction based on the quantified optical properties provided by DRS. This work was divided in three complementary approaches: the development of a system enabling diffuse reflectance and optical properties measurements in the same zone as Raman microspectroscopy; the fabrication of optical phantoms improving our knowledge on absorption, elastic scattering and Raman scattering phenomena; and the development of a Raman spectra correction model as function of the skin optical properties given by DRS measurements.
65

VIBRATIONAL SPECTROSCOPY FOR CHALLENGING SAMPLES AND SITUATIONS

Tran, Willie 23 April 2013 (has links)
No description available.
66

Structure Sensitivity in the Subnanometer Regime on Pt and Pd Supported Catalysts

Kuo, Chun-Te 29 October 2020 (has links)
Single-atom and cluster catalysts have been receiving significant interest due to not only their capability to approach the limit of atom efficiency but also to explore fundamentally unique properties. Supported Pt-group single atoms and clusters catalysts in the subnanometer size regime maximize the metal utilization and were reported to have extraordinary activities and/or selectivities compared with nanoparticles for various reactions including hydrogenation reactions. However, the relationship between metal nuclearity, electronic and their unique catalytic properties are still unclear. Thus, it is crucial to establish their relations for better future catalyst design. Ethylene hydrogenation and acetylene hydrogenation are two important probe reactions with the simplest alkene and alkyne, and they have been broadly studied as the benchmark reactions on the various catalyst systems. However, the catalytic properties and reaction mechanism of those hydrogenation reactions for metal nuclearitiy in the subnanometer regime is still not well understood. In this study, we applied different characterization techniques including x-ray absorption fine structure (XAFS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy(XPS), diffuse reflectance infrared spectroscopy (DRIFTS), calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the structure of Pt/TiO2 and Pd/COF single-atom catalysts and tested their catalytic properties for hydrogenation reactions. In order to develop such relations, we varied the nuclearity of Pt supported on TiO2 from single atoms to subnanometer clusters to larger nanoparticles. For acetylene hydrogenation, Pt in the subnanometer size regime exhibits remarkably high selectivity to ethylene compared to its nanoparticle counterparts. The high selectivity is resulted from the decreased electron density on Pt and destabilization of C2H4, which were rationalized by X-ray photoelectron spectroscopy and calorimetry results. On the other hand, the activity of H2 activation and acetylene hydrogenation decreased as Pt nuclearity decreased. Therefore, our results show there's a trade-off between activity and selectivity for acetylene hydrogenation. Additionally, the kinetics measurements of ethylene hydrogenation and acetylene hydrogenation were performed on Pt/TiO2 catalysts, and they found to be structure sensitive for both reactions, which the reaction orders and activation energy changes as particles size change. The activity of ethylene hydrogenation decreases, and activation energy increase from 43 to 86 kJ/mol, as Pt nuclearity decreased from an average size of 2.1 nm to 0.7 nm and single atoms. The reaction orders in hydrocarbons (ethylene and acetylene) were less negative on subnanometer clusters and single atoms in contract to nanoparticles. The results imply that hydrocarbons, ethylene and acetylene species, do not poison the catalyst on Pt in the subnanometer size regime, and hydrogen activation turn to competitive adsorption path with surface hydrocarbons species. Moreover, single atom Pd supported on imine-linked covalent organic framework was synthesized, characterized by a various of techniques including X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, and evaluated its catalytic properties for ethylene hydrogenation. The XAS results show that Pd atoms are isolated and stabilized by two covalent Pd–N and Pd-Cl bonds. DRIFTS of CO adsorption shows a sharp symmetrical peak at 2130 cm−1. The Pd single atoms are active for hydrogenation of ethylene to ethane at room temperature. The reaction orders in C2H4 and H2 were 0.0 and 0.5 suggesting that ethylene adsorption is not limiting while hydrogen forms on Pd through dissociative adsorption. / Doctor of Philosophy / More than 90% of chemicals come from petroleum and natural gas, and most of these chemicals are composed of alkene and alkyne, hydrocarbons containing at least one double bonds or triple bonds, such as ethylene, propylene, butenes, butadiene. These small hydrocarbon molecules with carbon-carbon bonds (double or triple) are in great interest of fundamental study and serve as probe units for understanding more complex reactions. Catalysts are materials that can be added to a chemical reaction to accelerate the specific rate of reactions. Most catalysts are supported noble metals thus increase the utilization of metal atoms are important. Decreasing the particle size to increase the metal dispersion is the simple approach to maximize the atom efficiency. However, it is not well understood how do the electronic property and catalytic performance change as particle size decrease. In this work, we focus on the structure sensitivity on catalysts in sub-nanometer region. Supported Pt and Pd catalysts, known to be highly active for hydrogenation reactions, are studied on hydrogenation reactions of acetylene and ethylene, the simplest alkene and alkyne. The Pd and Pt catalysts with particle sizes ranging from single atoms, sub-nanometer clusters and nanoparticles were prepared, characterized and tested for hydrogenation reactions mentioned above. The results show that significantly change in electronic property, catalytic performance (activity and/or selectivity) and reaction kinetics of the catalysts as the particle size changing from nanometer to sub-nanometer region. The fundamental understanding of structure sensitivity on catalysts and their relations between surface structure, electronic property and catalytic performance presented in this work can help the researchers design better catalysts for future work.
67

Structural and Kinetic Study of Low-temperature Oxidation Reactions on Noble Metal Single Atoms and Subnanometer Clusters

Lu, Yubing 23 April 2019 (has links)
Supported noble metal catalysts make the best utilization of noble metal atoms. Recent advances in nanotechnology have brought many attentions into the rational design of catalysts in the nanometer and subnanometer region. Recent studies showed that catalysts in the subnanometer regime could have extraordinary activity and selectivity. However, the structural performance relationships behind their unique catalytic performances are still unclear. To understand the effect of particle size and shape of noble metals, it is essential to understand the fundamental reaction mechanism. Single atoms catalysts and subnanometer clusters provide a unique opportunity for designing heterogeneous catalysts because of their unique geometric and electronic properties. CO oxidation is one of the important probe reactions. However, the reaction mechanism of noble single atoms is still unclear. Additionally, there is no agreement on whether the activity of supported single atoms is higher or lower than supported nanoparticles. In this study, we applied different operando techniques including x-ray absorption fine structure (XAFS), diffuse reflectance infrared spectroscopy (DRIFTS), with other characterization techniques including calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the active and stable structure of Ir/MgAl2O4 and Pt/CeO2 single-atom catalysts during CO oxidation. With all these characterization techniques, we also performed a kinetic study and first principle calculations to understand the reaction mechanism of single atoms for CO oxidation. For Ir single atoms catalysts, our results indicate that instead of poisoning by CO on Ir nanoparticles, Ir single atoms could adsorb more than one ligand, and the Ir(CO)(O) structure was identified as the most stable structure under reaction condition. Though one CO was strongly adsorbed during the entire reaction cycle, another CO could react with the surface adsorbed O* through an Eley-Rideal reaction mechanism. Ir single atoms also provide an interfacial site for the facile O2 activation between Ir and Al with a low barrier, and therefore O2 activation step is feasible even at room temperature. For Pt single-atom catalysts, our results showed that Pt(O)3(CO) structure is stable in O2 and N2 at 150 °C. However, when dosing CO at 150 °C, one surface O* in Pt(O)3(CO) could react with CO to form CO2, and the reacted O* can be refilled when flowing O2 again at 150 °C. This suggests that an adsorbed CO is present in the entire reaction cycle as a ligand, and another gas phase CO could react with surface O* to form CO2 during low-temperature CO oxidation. Supported single atoms synthesized with conventional methods usually consist of a mixture of single atoms and nanoparticles. It is important to quantify the surface site fraction of single atoms and nanoparticles when studying catalytic performances. Because of the unique reaction mechanism of Ir single atoms and Ir nanoparticles, we showed that kinetic measurements could be applied as a simple and direct method of quantifying surface site fractions. Our kinetic methods could also potentially be applied to quantifying other surface species when their kinetic behaviors are significantly different. We also benchmarked other in-situ and ex-situ methods of quantifying surface site fraction of single atoms and nanoparticles. To bridge the gap between single atoms and nanoparticles and have a better understanding of the effect of nuclearity on CO oxidation, we also studied supported Ir subnanometer clusters with the average size less than 0.7 nm (< 13 atoms) prepared by both inorganic precursor and organometallic complex Ir4(CO)12. Low-temperature CO adsorption indicates that CO and O2/O could co-adsorb on Ir subnanometer clusters, however on larger nanoparticle the particle surface is covered by CO only. Additional co-adsorption of CO and O2 was studied by CO and O2 calorimetry at room temperature. CO oxidation results showed that Ir subnanometer clusters are more active than Ir single atoms and Ir nanoparticles at all conditions, and this could be explained by the competitive adsorption of CO and O2 on subnanometer clusters. / Doctor of Philosophy / CO oxidation is one of the important reactions in catalytic converters. Three-way catalysts, typically supported noble metals, are very efficient at high temperature but could be poisoned by CO at cold start. Better designed catalysts are required to improve the performance of the catalytic converter to lower the emissions of gasoline engines. To reach this goal, more efficient use of the noble metal is required. Single-atom catalysts consist of isolated noble metal atoms supported on different supports, which provide the best utilization of noble metal atoms and provides a new opportunity for a better design of heterogeneous catalysts. The unique electronic and geometric properties of metal single atoms catalysts could lead to a better activity and selectivity. Subnanometer clusters have also been shown to have unique electronic properties. With a better understanding of the structure of supported single atoms and subnanometer clusters, their catalytic performance can be optimized for better catalysts in the catalytic converter and other applications. In this work, we applied in-situ and operando characterization, kinetic studies and first principle calculations aiming to understand the active and stable structure of noble metal single atoms and vi subnanometer clusters under reaction condition, and their reaction mechanisms during CO oxidations. For MgAl₂O₄ supported Ir single atoms, our results suggest that CO could be co-adsorbed with O₂/O under reaction conditions. These multiple ligands adsorption leads to a unique reaction mechanism during CO oxidation. Though one CO was adsorbed during the whole reaction cycle, another gas phase CO could react with the O* species co-adsorbed with CO through an Eley-Rideal mechanism. This suggests that Ir single atoms are no longer poisoned by CO, and on the other hand the O₂ can be activated on an interfacial site with a low reaction barrier. Ir subnanometer clusters showed higher activities than Ir single atoms and nanoparticles. In-situ IR and high energy resolution fluorescence detected – X-ray absorption near edge spectroscopy (HERFD-XANES) showed that CO could co-adsorb with O₂ at room temperature, and this competitive adsorption could explain the high activity during CO oxidation. Supported Ir single atoms and subnanometer clusters are not poisoned by CO and O₂ could be co-adsorbed, this could be potentially applied to solve the poisoning of catalyst in the catalytic converter at cold start temperature. We also performed kinetic study on CeO₂ supported Pt single atoms. Similar behavior was observed, and we showed that the CO and O co-adsorbed complex is stable in O₂ and N₂, but could react in CO. With the understanding of the active structure of noble metal single atoms and the origin of activities, better-designed catalysts can be synthesized to improve the activity and selectivity of low-temperature oxidation reactions.
68

Light-tissue interactions for developing portable and wearable optoelectronic devices for sensing of tissue condition, diagnostics and treatment in photodynamic therapy (PDT)

Kulyk, Olena January 2016 (has links)
This thesis presents the development and in-vivo applications of wearable and portable devices for the investigation of light interaction with tissue involved in Photodynamic therapy (PDT) and during contraction of muscles. A hand-held device and a clinical method were developed for time course in-vivo imaging of the fluorescence of the photosensitizer Protoporphyrin IX (PpIX) in healthy and diseased skin with the aim to guide improvement of PDT protocols. The device was used in a small clinical study on 11 healthy volunteers and 13 patients diagnosed with non-melanoma skin cancer (NMSC). Two types of PpIX precursors were administered: Ameluz gel and Metvix® cream. The fluorescence was imaged with a 10 minute time step over three hours which was the recommended metabolism time before commencing PDT treatment at Ninewells Hospital, Dundee. The fluorescence time course was calculated by integrating the areas with the highest intensity. The fluorescence continued to grow in all subjects during the three hours. The time course varied between individuals. There was no statistical significance between either healthy volunteers or patients in Ameluz vs Metvix® groups; nor was there statistical difference between the three lesions groups (Actinic keratosis (AK) Ameluz vs AK Metvix® vs Basal cell carcinoma (BCC) Metvix®). The p-value was larger than 0.05 in a two sample t-test with unequal variances for all the groups. However, there was strong body site dependence between the head & neck compared to the lower leg & feet, or the trunk & hands body site groups (p-value < 0.01). One of the possible explanations for this was temperature and vasculature variation in skin at different body sites: the temperature is higher and the vasculature structure is denser at the head and the neck compared to the lower leg or the trunk. The temperature was not measured during the study. So in order to support this hypothesis, typical skin temperatures at the lesion sites were taken from the IR thermal images of healthy skin available in literature. PpIX fluorescence had a positive correlation to temperature. If this hypothesis is true, it will be highly important to PDT treatment. Increasing the temperature could speed up the metabolism and reduce the waiting time before starting the treatment; ambient temperature should be taken into account for daylight PDT; cooling air as pain management should be administered with caution. Potential improvements for wearable PDT light sources were investigated by modelling light transport in skin for the current LED-based Ambulight PDT device, a commercial OLED for future devices and a directional OLED developed in the group. The optical models were implemented in commercial optical software (with intrinsic Monte Carlo ray tracing and Henyey-Greenstein scattering approximation) which was validated on diffuse reflectance and transmittance measurements using in-house made tissue phantoms. The modelling was applied to investigate the benefits from diffusive and forward scattering properties of skin on light transmission in treatment light sources. 1 mm thick skin can only compensate approximately 10% of non-uniform irradiance. It means that uniform illumination is crucial for the treatment light sources. Forward scattering in skin showed a 10% improved light transmission from a collimated emission compared to a wide angle Lambertian emission. However, depth-dependent transmission measurements of directional vs Lambertian emission from organic light emitting films (a nano-imprinted grating was fabricated to provide directional emission in one of the films), collimated vs diffused HeNe laser light through fresh porcine skin did not show the expected improvement. This could be explained by skin roughness which was previously found to change the optical properties and may also affect light coupling. The modelling was applied to guide an optical design of another wearable device – a muscle contraction sensor. Muscle is fibrous and because of that scatters light differently in different directions. The sensor detects the change in backscattered light in parallel and perpendicular directions with respect to muscle fibres. The sensor was implemented on a wearable bandage on fully flexible substrate with flexible OLED and organic photodiodes. The major advantages of organic optoelectronic sensing compared to conventional electromyography (EMG) sensors are the ability to distinguish two types of contractions (isotonic and isometric), insensitivity to electromagnetic interference and the absence of an immune response due to non-invasive electrode-free sensing. Optical modelling was performed to understand the operation of the sensor. A 3D anisotropic optical model of scattering in muscle was created by geometrical manipulations with the standard Henyey-Greenstein scattering volumes. The penetration depth from the Super Yellow OLED was found to be 20-25 mm; the optimal separation between the source and the detector was found to be 20 mm. This distance provided a still detectable signal along with the best discrimination between the two backscatterings. When a 2 mm thick layer of skin and a 2 mm thick layer of adipose tissue were added to the model, the signal was hugely diffused. The discrimination between the two backscatterings decreased by three orders of magnitude, the penetration depth in muscle was reduced, and the intensity of the signal dropped down but was still detectable. With 5 mm thick adipose tissue and 2 mm thick skin the signal was too diffused and interacted with very shallow layers of muscle which approached the limits of the optical sensing of muscle activity.
69

Μελέτη τροποποιημένων με βόριο καταλυτών Νi/Al2O3 για την αναμόρφωση του μεθανίου με διοξείδιο του άνθρακα / Study of boron-modified Ni/Al2O3 catalysts for the carbon dioxide reforming of methane

Φούσκας, Αγάπιος 25 January 2012 (has links)
Κατά τις τελευταίες δεκαετίες παρατηρείται συνεχής αύξηση της έντασης του φαινομένου του θερμοκηπίου γεγονός που προκαλεί σημαντικές συνέπειες στο περιβάλλον και στη ζωή μας γενικότερα. Συνεπώς, είναι απαραίτητη η μείωση της ανθρωπογενούς εκπομπής των αερίων που συμβάλλουν στην αύξηση του φαινομένου αυτού. Η εκμετάλλευση και χρήση των δύο πιο σημαντικών θερμοκηπικών αερίων, του μεθανίου και του διοξειδίου του άνθρακα, μπορεί να επιτευχθεί με την αναμόρφωση του CH4 με CO2 ή αλλιώς ξηρή αναμόρφωση του μεθανίου (Dry Reforming of Methane-DRM). Με τη διεργασία DRM τα δύο συγκεκριμένα αέρια μετατρέπονται σε αέριο σύνθεσης (synthesis gas), το οποίο χρησιμοποιείται είτε για τη σύνθεση πληθώρας οργανικών ενώσεων, είτε για την παραγωγή Η2 για ενεργειακούς σκοπούς. Η DRM παρουσιάζει σημαντικά πλεονεκτήματα: δεν απαιτείται η χρήση ύδατος, φθηνό σχετικά κόστος εγκαταστάσεων, χρησιμοποιείται σε χημικά συστήματα μεταφοράς ενέργειας, ενώ και το αέριο σύνθεσης που παράγεται έχει ακόμα κατάλληλη αναλογία για συνθέσεις Fischer–Tropsch. Παρόλα αυτά η DRM δεν έχει εκτεταμένη βιομηχανική εφαρμογή επειδή αντιμετωπίζει ένα σημαντικό μειονέκτημα: ο καταλύτης μετά από κάποιο χρόνο λειτουργίας απενεργοποιείται λόγω του άνθρακα που αποτίθεται πάνω του. Στην παρούσα εργασία μελετήθηκε ο state of the art καταλύτης Ni/Al2O3, τον οποίο τροποποιήσαμε με βόριο σε διάφορους λόγους [Β/(B+Νi)] με κύριο στόχο τη μείωση των ανθρακούχων αποθέσεων. Οι τροποποιημένοι καταλύτες συντέθηκαν με τη μέθοδο του υγρού συνεμποτισμού και χαρακτηρίστηκαν φυσικοχημικά με διάφορες τεχνικές, ώστε να μελετήσουμε την επίδραση του βορίου στην υφή τους (ΒΕΤ, porosimetry, SEM, TEM), στη δομή τους (XRD, UV-Vis DRS) και στην αναγωγιμότητά τους (H2-TPR). Η καταλυτική συμπεριφορά τους για την αντίδραση της ξηρής αναμόρφωσης του μεθανίου αξιολογήθηκε σε αντιδραστήρα σταθερής κλίνης, για 24h, σε συνθήκες: 973Κ, 1 atm, τροφοδοσία 50%CH4-50%CO2. Ο άνθρακας που αποτέθηκε στους χρησιμοποιημένους καταλύτες μετρήθηκε με τη μέθοδο της θερμοπρογραμματισμένης υδρογόνωσης (TPH). Τα ανηγμένα και χρησιμοποιημένα στην DRM καταλυτικά δείγματα μελετήθηκαν επίσης με ηλεκτρονικό μικροσκόπιο σάρωσης (SEM με αναλυτή EDS) και ηλεκτρονικό μικροσκόπιο διαπερατότητας (ΤΕΜ). Βρέθηκε ότι η παρουσία του Β μειώνει σημαντικά την ποσότητα του αποτιθέμενου άνθρακα στους καταλύτες Ni/Al2O3, σε ποσοστό έως και 86%, χωρίς να επηρεάζει ιδιαίτερα τη δραστικότητα και την εκλεκτικότητα των καταλυτών. Σημαντικό ρόλο παίζει το ποσοστό του Β στον καταλύτη, με τον καταλύτη με λόγο Β/(B+Νi) = 0,5 να εμφανίζει τη βέλτιστη συμπεριφορά. Τα αποτελέσματα μας έδειξαν ότι η ιδιαίτερη θετική επίδραση του βορίου οφείλεται κυρίως στο γεγονός ότι ευνοεί τη διασπορά του μεταλλικού νικελίου. Τροποποίηση με βόριο, σε κατάλληλη περιοχή φορτίσεων, του καταλύτη Ni/Al2O3 μεγιστοποιεί το πλήθος των νανοσωματιδίων νικελίου με μέση διάσταση < 6.0 nm, τα οποία, ως γνωστόν, ελαχιστοποιούν την απόθεση άνθρακα. / The intensity of the greenhouse effect is constantly increasing in the last few decades with an adverse effect both on the environment and the humanity. In order to decrease the effect, human-caused emissions should be minimized. The two most important greenhouse gases, methane and carbon dioxide, can be used in the DRM (Dry Reforming of Methane) process. With this process the above mentioned gases are converted to synthesis gas, which is then used for the synthesis of a great number of organic compounds and synthetic fuels (through the Fisher-Tropsch syntheses) or for the production hydrogen to be used as a fuel (energy purposes). The DRM process presents a number of advantages, namely: no water is required, relatively low cost of process plants,it can be used as a Chemical Energy Transfer System and, finally, the produced synthesis gas has adequate CO/H2 ratio for Fisher-Tropsch syntheses. Although DRM is a promising process, its industrial application is hindered by a major drawback: the catalysts are rapidly deactivating due to coking. In the current study, the state of the art catalyst Ni/Al2O3 was studied and modified with boron, using different ratios of Β/(B+Νi). Our primary objective was to reduce coking. The modified catalysts were synthesized by wet co-impregnation and physicochemically characterized in their oxidic, reduced and used forms, using various techniques, in order to investigate the influence of boron on the texture (BET, Porosimetry, SEM, TEM), structure (XRD, UV-Vis DRS) and reducibility (H2-TPR) of the catalysts. The catalytic performance for the DRM process was studied under stable conditions (973Κ, 1 atm and 50%CH4-50%CO2 undiluted feed), for 24h, using a fixed bed reactor. Carbonaceous deposits on the used catalysts were determined by Temperature Programmed Hydrogenation (TPH). Scanning Electron Microscopy (SEM) with EDS analyser and Transmission Electron Microscopy (TEM) were also used in the study of reduced and used catalytic samples. Modifying Ni/Al2O3 catalysts with boron results in a great decrease of the deposited coke (up to 86%), without any significantly influence on the activity and selectivity of the catalysts. A major factor influencing the catalyst is the B loading, with the ratio Β/(B+Νi)=0,5 giving the best results. Boron’s positive effect was mainly attributed to its ability to increase Ni dispersion. Modification of Ni/Al2O3 catalysts, by using the appropriate boron loading, resulted to an increase of the amount of nickel nanoparticles with an average dimension under 6.0 nm, which are known to minimize coke deposition.
70

Cristallogenèse exploratoire, structure cristalline et propriétés physiques des deux nouveaux composés dans le système PbO-Fe2O3-P2O5 / Exploratory crystallogenesis, crystalline structure and physical properties of two new compounds in PbO-Fe2O3-P2O5 system

El Hafid, Moulay El Hassan 22 October 2013 (has links)
Dans ce travail nous avons découvert un nouvel oxyphosphate PbFe3O(PO4)3 dont nous avons déterminé la structure par diffraction des rayons X sur monocristal entre 293 K et 973 K (monoclinique, groupe d’espace P21/m, a = 7,55826 Å, b = 6,3759 Å, c = 10,4245 Å et β = 99,956°, Z = 2, à température ambiante). La mesure de la susceptibilité magnétique statique et les mesures de chaleur spécifiques effectuées sur monocristaux révèlent l’existence d’une séquence inhabituelle de transitions de phase de type ferromagnétiques à Tc1 = 31,8 K, T2 = 23,4 K et Tc3 = 10 K. La mesure de la susceptibilité alternative suggère l’existence d’une dynamique type vitreuse entre ~20 K et Tc3. Nous avons réussi une première extraction des valeurs des exposants critiques (β, γ et δ) par les mesures de la susceptibilité magnétique alternative à la fois sur les poudres et les monocristaux de PbFe3O(PO4)3 et nous avons trouvé des valeurs compatibles avec celles prédites par la théorie du champ moyen.Nous avons aussi étudié et caractérisé les poudres de la série des composés AFe3O(PO4)3 (A=Ca, Sr, Pb) par la diffraction des rayons X, la microsonde Castaing (EPMA) couplée avec spectroscopie à dispersion de longueur d’onde (WDS), la spectroscopie optique et Raman, les mesures calorimétriques (DSC et chaleur spécifique) et les mesures magnétiques. Les mesures d’aimantation, de susceptibilité magnétique et de chaleur spécifique effectuées sur les poudres de la série des composés AFe3O(PO4)3 (A=Ca, Sr, Pb) ont confirmé la succession des trois transitions du second ordre de type ferromagnétique s’étendant sur l’intervalle de température 32 – 8 K. Les mesures de la réflexion diffuse révèlent l’existence de deux bandes d’absorption à 1047 et 837 nm dans les poudres de PbFe3O(PO4)3 et de SrFe3O(PO4)3, avec des sections efficaces ~10-20 cm2 typiques des transitions intraconfigurationnelles interdites de spin et dipolaire électrique forcée.L’exploration du système PbO-Fe2O3-P2O5 a conduit à la découverte d’une nouvelle phase de type Langbeinite et de composition chimique Pb3Fe4(PO4)6, dont la structure cristalline est déterminée par diffraction des rayons X à température ambiante sur monocristaux (P 21 3, Z=4, a=9,7831(2) Å). Cette phase ne subit aucune transition de phase sur la gamme de température 350 – 6 K et ne présente aucun type d’ordre à longue portée jusqu’à 2 K. / A new oxyphosphate compound PbFe3O(PO4)3 has been discovered. Its crystal structure was characterized by single crystal X-ray diffraction (XRD) between 293 and 973 K (monoclinic symmetry P 21/m, a = 7.5826 Å, b = 6.3759 Å, c = 10.4245 Å and  = 99.956 °, Z = 2, at room temperature). DC magnetic susceptibility and specific heat measurements performed on single crystals unveiled an unusual sequence of second order ferromagnetic-like phase transitions at Tc1 = 31.8 K, T2 = 23.4 K and Tc3 ~ 10 K. AC magnetic susceptibility suggests a glassy-like dynamics between ~ 20 K and Tc3. A first extraction of the critical exponents (β,γ,δ) was performed by ac magnetic susceptibility in both PbFe3O(PO4)3 powders and single crystals and the values were found to be consistent with mean-field theory.AFe3O(PO4)3 (A= Ca, Sr and Pb) powder compounds were studied by means of X-Ray diffraction (XRD), from 300 to 6 K in the case of A=Pb, electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A= Ca, Sr and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32 – 8 K temperature range. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ~10-20 cm2 typical of spin-forbidden and forced electric dipole transitions.Further exploration of the PbO-Fe2O3-P2O5 system led to the discovery of a new langbeinite phase, Pb3Fe4(PO4)6, the crystal structure of which was solved by room temperature single crystal XRD (P 21 3, Z=4, a=9,7831(2) Å). This phase does not undergo any structural phase transition down to 6 K nor any kind of long range ordering down to 2 K.

Page generated in 0.1095 seconds