• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 70
  • 23
  • 11
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 303
  • 87
  • 66
  • 50
  • 49
  • 49
  • 49
  • 48
  • 45
  • 40
  • 36
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of Composite Adhesive Bonds Using Digital Image Correlation

Shrestha, Shashi Shekhar 01 May 2015 (has links)
Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.
12

Digital Laser Speckle Image Correlation

Mosayebi, Mahshad 01 May 2017 (has links)
This thesis examines the feasibility of combining Digital Image Correlation (DIC) with laser speckle based methods to form a new hybrid deformation measurement method called Digital Laser Speckle Image Correlation (DilSIC). Consequently, this method does not require any sample preparation and allows for the measurement of displacement of micro structures in addition to large displacements. In this technique, a coherent 30mW-632nm laser beam is expanded with 40X lens and then illuminated on the target surface to produce a fine, homogenous laser speckle pattern. Images were captured before and after deformation due to external load and the whole field displacement and strain were determined by the DIC method. This technique could measure displacement less than 30-μm with high accuracy when a 120mm × 80mm area of the surface was inspected. Up to 10% strain was measured by this technique with high accuracy during the whole range. Eventually the sub-surface crack was located successfully, which is a revolutionary achievement in NDT optical methods. This method was tested in different material, with different roughness. Aluminum sheet and rubber material were used mostly. This method could broaden the capability of displacement measurement and subsurface crack detection in wide range of materials.
13

EMBEDDED SPECKLE BONDLINE DEFECT DETECTION USING ULTRASONIC DIGITAL IMAGE CORRELATION (UT-DIC)

Lim, WeiChiang Eric 01 August 2018 (has links)
The primary objective of this research is to conduct further evaluation of ultrasonic digital image correlation (UT-DIC) on strain map analysis and defect detection of adhesive joints with embedded speckle pattern. UT-DIC is a non-destructive evaluation method that utilized ultrasonic C-scan images for whole field strain and displacement analysis. Acrylic glass, epoxy resin system and metal shavings with high acoustic impedance of a specific weight were used to create the samples which were loaded under tension. Defects with varying shapes and sizes were implemented by surface preparation to understand the limits of this approach. UT-DIC and optical DIC strain map results were compared, and it was found that each approach detected certain shapes of defect better than the other.
14

Projeto de um equipamento de fadiga para caracterizaÃÃo do dano em telhas de aÃo devido à aÃÃo do vento aplicando correlaÃÃo digital de imagens e modelagem computacional / Design of a device for characterization of fatigue damage in steel roofing due to wind action applying digital image correlation and computational modeling

Washington Luiz Rodrigues de Queiroz 27 September 2013 (has links)
As coberturas constituem um elemento essencial para a sobrevivÃncia humana. As transformaÃÃes mais portantes das cobertas relacionaram-se, por um lado, com a prÃ-fabricaÃÃo do material a ser utilizado, que veio permitir maiores garantias de Ãxito em qualquer aplicaÃÃo, e por outro lado, com o aparecimento de novos materiais na construÃÃo, como o vidro laminado, peÃas de madeira, os materiais plÃsticos e principalmente o alumÃnio e o aÃo. Neste contexto os telhados de metal sÃo bem avaliados por vÃrios motivos, sÃo resistentes, durÃveis, vencem grandes vÃos, resistem à corrosÃo e sÃo mais leves em relaÃÃo Ãs cerÃmicas, gerando economia nos custos da estrutura e facilidade no manuseio, transporte e montagem. A problemÃtica dos ventos de alta velocidade, como furacÃes e tempestades, muitas vezes causam danos graves Ãs telhas metÃlicas. Os danos causados pelo vento mostraram que a fadiga promove uma trinca no telhado em torno dos furos do prendedor ocasionando um despendimento das telhas em sequÃncia. Nesse trabalho desenvolve-se uma mÃquina para estudos de simulaÃÃo de carregamento cÃclico em telhas metÃlicas simulando a forÃa do vento. Utilizando a tÃcnica da CorrelaÃÃo Digital de Imagem (CDI) desenvolveu-se uma metodologia que auxiliou em termos quantitativos e qualitativos a avaliaÃÃo da integridade da telha. / Shelter is an essential element for human survival. The most important changes in shelter have been in regard, on the one hand, of pre-fabrication of the material to be used, which better guarantees success at any application, and, on the other hand, of the rise of new building materials, such as laminated glass, wooden parts, plastic materials, and mainly aluminum and steel. In this context, metal roofs are praised for several reasons. They are sturdy and durable, span across wide areas, stand corrosion, and are lighter compared to ceramic tiles, which leads to savings in structure costs and ease of handling, transport, and assembly. The issue of high- speed winds, such as hurricanes and storms, often causes great damage to metal tiling. Wind damages show that the low-cycle wear fissures the roofing around the fastening holes, causing the tiles to become loose. This research developed a machine to study the simulation of cyclic loads in metal tiles by simulating wind force. By using the Digital Image Correlation (DIC) technique, a methodology was developed that will aid in assessing tile integrity both quantitatively and qualitatively.
15

Macroscale Analysis of Strain Path Change Effects in AA3104 by Digital Image Correlation

Lan, Yusha January 2014 (has links)
Cold rolled aluminum is a widely used metal in industry. The forming limit diagram (FLD) which is commonly used to predict safe deformation parameters currently fails to predict the uniform elongation after non-proportional strain path often found in industrial operations. In this work, a non-proportional strain path change in aluminum alloy 3104 going from plane strain tension to uniaxial tension was investigated. Plane strain tensile tests have been carried out to various pre-strains (3%, 6% and 9%), followed by uniaxial tensile tests at various orientation with respect to the tensile direction (0°, 45° and 90°). Digital image correlation (DIC) was employed to analyze the strain distribution in the sample during deformation. The mechanical response was studied as a function of pre-strain and reloading angle to quantify the effect of strain path change on AA3104.
16

The effect of macrozones in Ti-6Al-4V on the strain localisation behaviour

Lunt, David January 2015 (has links)
Ti-6Al-4V is the most widely used titanium alloy and is typically used in stages of gas turbine engines, due to its high strength-to-weight ratio, corrosion resistance and high strength at moderate temperatures. However, the alloy is susceptible to the development of strong textures during thermomechanical processing that leads to a preferred crystallographic orientation. These are referred to as macrozones and are thought to develop during the β to α phase transformation, as a result of the retention of large prior β grains during processing and variant selection. Macrozones are clusters of neighbouring grains with a common crystallographic orientation that may act as one single grain during loading and have been shown to cause scatter in the fatigue life. The focus of the current work was based on the analysing the strain behaviour of soft, hard and no macrozones within the microstructure, during various loading conditions. The local strain behaviour was studied at a micro and nanoscale, using the digital image correlation (DIC) technique, which utilises microstructural images recorded during mechanical loading. On a microscale, the no-macrozone and strong-macrozone condition loaded at 0% exhibited homogeneous strain behaviour. The strong-macrozone condition loaded at 45% and 90% to the extrusion direction, respectively, developed pronounced high strain bands correlating to regions that were favourably oriented for prismatic and basal slip, respectively. Characterisation of the slip bands provided a detailed understanding of the deformation behaviour at the nanoscale and the slip system was subsequently determined for each grain using slip trace analysis. Prismatic slip was the dominant slip system in all conditions, particularly in the soft-oriented macrozone regions of the strong-macrozone condition loaded at 45 degrees. Shear strains of 10 times the appliedstrain were observed. Further investigations on the strong-macrozone condition loaded at 45 degrees to ED during standard and dwell fatigue demonstrated early failure in the dwell sample, with higher strain accumulation for dwell.
17

Microstructure for Enhanced Plasticity and Toughness

Das, Shamiparna 08 1900 (has links)
Magnesium is the lightest metal with a very high specific strength. However, its practical applicability is limited by its toughness and reliability. Mg, being HCP has low ductility. This makes the improvement of toughness a grand challenge in Mg alloys. Friction stir processing (FSP) is a thermomechanical technique used to effect microstructural modification. Here, FSP was utilized to affect the toughness of WE43 sheets through microstructural modification. Room temperature Kahn-type tests were conducted to measure the toughness of WE43 sheets. Microscopic techniques (SEM, TEM) was utilized to study the effect of various microstructural factors like grain size, texture, constituent particles, precipitates on crack initiation and propagation. Tensile properties were evaluated by mini-tensile tests. Crack growth in WE43 sheets was also affected by mechanics and digital image correlation (DIC) was utilized to study the plastic zone size. The underlying mechanisms affecting toughness of these sheets were understood which will help in formulating ways in improving it. WE43 nanocomposites were fabricated via FSP. Uniform distribution of reinforcements was obtained in the composites. Improved mechanical properties like that of enhanced strength, increased hardness and stiffness were obtained. But contrary to other metal matrix composites which show reduction in ductility with incorporation of ceramic reinforcements, the nanocomposites showed good strength-ductility combination. The composites were precisely characterized and mechanisms governing this property were studied. The nano-length of the reinforcements was observed to be the main criteria and the dislocation-particle interaction, the main reason behind the strength-ductility property.
18

Mesures de forme, de déplacement, et de paramètres mécaniques parstéréo-corrélation d’images isogéométrique / Shape, displacement and mechanical properties from isogeometric stereo-correlation.

Dufour, John-Eric 26 October 2015 (has links)
Ces travaux de thèse sont dédiés à la mesure de formes 3D, de champs cinématiques 3D surfaciques et à l'identification de paramètres mécaniques à partir de mesures par corrélation d'images. Cette méthode optique se base sur l'utilisation de caméras comme support de la mesure. Pour cette raison, une étude des différents modèles de caméra classiquement utilisés est effectuée, puis le passage d'un formalisme continu pour la description des images à une approche discrète utilisant la notion de pixel est décrit. Une attention particulière est portée aux distorsions optiques et une approche utilisant la corrélation d'images pour les évaluer est développée. Une nouvelle méthode de mesure de forme 3D et de champs de déplacements 3D surfaciques par stéréo-corrélation d'images est introduite. Elle utilise un modèle numérique de l'objet observé comme support pour la corrélation. Cette méthode mène à une formulation globale de la stéréo-corrélation. Elle peut être écrite dans le cas général et particularisée à des surfaces NURBS (non-uniform rational B-splines). Le champ de déplacement est également exprimé dans un formalisme NURBS complètement cohérent avec le modèle géométrique utilisé pour définir la forme observée. Des mesures sont validées en utilisant des mouvements imposés à un carreau de Bézier usiné. La faisabilité de la technique dans plusieurs cas industriels est également étudiée avec, par exemple, la mesure des déplacements d'une pièce composite de train d'atterrissage chargée mécaniquement. Enfin, à partir de cette formulation isogéométrique de la mesure de champs, une étude de la caractérisation de propriétés élastiques est effectuée. Deux méthodes inspirées d'approches existantes sont ainsi proposées, utilisant des mesures de champs et des calculs numériques dans un formalisme isogéométrique pour identifier des paramètres de loi de comportement élastique isotrope sur un cas test numérique et pour un essai de traction uniaxiale. / This thesis is dedicated to measurement of 3D shapes, 3D kinematic fields on surfaces and identification of mechanical properties from digital image correlation measurements. This optical method uses cameras as measurement tools. For this reason, a study of the classical camera models used is performed and the description of the digitalization of an image from a continuous to a discrete formalism using the pixel is described. A specific work is dedicated to optical distortions and a method based on digital image correlation to evaluate these distortions is developped.A new method for 3D shapes and 3D displacement fields on surfaces using stereo-correlation is introduced. A numerical description of the observed object is used as a support to perform the correlation. This method lead to a global approach to stereo-correlation. It can be rewrite in a generic case or in particular to be applied to NURBS (Non-Uniform Rational B-Splines) surfaces. The displacement fields is therefore expressed in a NURBS formalism which is completely consistent with the geometrical model used to described the observed shape. Measurements are validated using prescribed motions on a Bezier patch. The feasibility of such a technique in several industrial cases is then studied with for example the measurement of the displacement of a composite part of a landing gear under mechanical loading.Finally, from this isogeometric formulation of full-field measurement, a study of the identification of elastic properties is performed. Two methods inspired from existing approaches are proposed, using full-field measurement and numerical simulations in a common isogeometric formalism to identify parameters of an isotropic linear elastic constitutive law on a both a numerical test case and a uniaxial tensile test.
19

USING THREE-DIMENSIONAL DIGITAL IMAGE CORRELATION TO FIND STRAINS IN STRUCTURAL POLYMER FOAM

Gadepalli, Prasanna Chaitanya 25 August 2020 (has links)
No description available.
20

Fatigue Crack Propagation in Functionally Graded Materials

Hauber, Brett Kenneth 28 December 2009 (has links)
No description available.

Page generated in 0.1424 seconds