• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Composite Adhesive Bonds Using Digital Image Correlation

Shrestha, Shashi Shekhar 01 May 2015 (has links)
Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.
2

Použití kyanoakrylátového lepidla při ošetření insuficientní vena saphena magna a parva. / Cyanoacrylate in treatment of great and small saphenous vein.

Novotný, Karel January 2019 (has links)
Introduction: Cyanoacrylate gluing technique is the least strenuous treatment of varicose trunks which does not necessitate tumescent anaesthesia and post procedural stocking compression. In response to the long-term unavailability of commercial kits with N-butyl-2-cyanoacrylate (Histoacryl) in the Czech Republic, we used a modified technique, which is based on the technique of endovascular treatment of AV malformations in the brain and uses a mixture of cyanoacrylate and Lipiodol to clog. We evaluated the success of the method, complications and clinical improvement of chronic venous insufficiency. Parts of the work are histological findings of collected samples of veins at various time intervals. In an in vitro experiment, we compared the bond strength of a bonded shear to a tear device. The adhesive mix values used were compared with those of commercially available adhesives for this purpose. Patients and methods: Fifty-six limbs in 49 patients suffering from great saphenous vein or small saphenous vein insufficiency in combination with symptomatic chronic venous insufficiency and complicating comorbidities were treated with a modified endovascular cyanoacrylate glue application technique. A histopathological examination was conducted on vein samples from six. In each patient a sample of the...
3

Development of Anchor Systems for FRCM Retrofits

Zahmak, Abdulla 16 June 2023 (has links)
Fabric Reinforced Cementitious Matrix (FRCM) composites utilize a mineral mortar matrix as a substitute for epoxy resin that is used for Fibre Reinforced Polymer (FRP). This eliminates issues associated with the low thermal compatibility of FRP with concrete, susceptibility to UV radiation, and sensitivity to high temperatures in which organic polymers undergo vitrification. This study discussed the effect of varying parameters like the number of Carbon-FRCM (C-FRCM) layers (1, 2 and 3 layers), different anchorage configurations (non-anchored, spike anchor, wrap anchor and mechanical anchor), bond length (300 or 200 mm), and the fabric type (unidirectional and bidirectional) on the direct shear behaviour of C-FRCM composites bonded to a concrete substrate, especially the fibre-matrix bond which is the most common debonding interface of FRCM composites. Calibrated models of the bond – slip behaviour are provided based on the fabric type and number of fabric layers. The results indicate that the anchor type and the overall composite thickness are the main factors that control the failure mode of the composite. All properly anchored specimens using spike and wrap anchors failed due to fabric rupture. Moreover, a considerable number of the non-anchored specimens failed due to composite-substrate debonding, although premature fabric rupture was frequently observed. Furthermore, specimens with bidirectional fabric demonstrated shallower penetration of the strain into the composite which may be due to the horizontal fabric strands providing some anchorage for the longitudinal strands. They also exhibited slip initiation at a higher stress compared to unidirectional specimens. In addition, slip initiation stress of unidirectional specimens decreased with more fabric layers which may indicate that the additional layers have a lower bond efficiency. For the same reason, specimens with three layers of fabric generally experienced deeper strain penetration into the composite than one-layered or two-layered specimens regardless of the anchor type. The results also indicate that the use of bidirectional fabric and anchorage systems decreases the strain penetration into the composite and correspondingly, the effective length is shortened. Surface strain measurements captured using digital image correlation generally did not match the internal fabric strain values obtained from strain gauges.
4

The Thermal Stability of Anodic Oxide Coatings - Strength and Durability of Adhesively Bonded Ti-6Al-4V Alloy

Tiwari, Rajesh Kumar 16 September 2002 (has links)
The lap shear strength of chromic acid anodized, primed, Ti-6Al-4V alloy bonded with a high performance FM-5 polyimide adhesive has been investigated as a function of thermal treatment for selected times at various temperatures in air. The research findings indicate that the lap shear strength decreases with the increase in duration of the thermal treatment at constant temperature and with the increase in temperature at constant time. The bond fails increasingly in the oxide coating with increasing treatment temperature and time of treatment. Surface analysis results for debonded specimens suggest that the process leading to failure is the formation of fluorine-containing materials within the oxide, which weakens the adherend-adhesive bond. The formation of the fluorine components is facilitated by treatment at elevated temperatures. This study suggests that the presence of fluoride ions in the anodic oxide coating, prior to bonding, is detrimental to the bond strength of adhesively bonded Ti-alloy when exposed to high temperatures. The wedge test configuration was used to investigate the influence of temperature on the bond durability of adhesively bonded chromic acid anodized Ti-6Al-4V alloy in air. Based on the average crack length vs. exposure time data, the bond durability varied in the order -25°C > 24°C > 177°C. In each case, the bonded joint failed cohesively within the adhesive, irrespective of the temperature of exposure. XPS analysis and scanning electron photomicrographs of failure surfaces revealed that the failure occurred at the scrim cloth/adhesive interface. The influence of thermal treatment history on the bond durability of adhesively bonded chromic acid anodized Ti-6Al-4V alloy immersed in boiling water was also investigated. The average crack length vs. immersion time indicated no significant differences for specimens that were thermally treated and then bonded compared to the non-thermally treated specimens. In addition, the failure mode was cohesive within the adhesive for specimens prepared using various thermal treatment conditions. The crack growths for samples treated for 0.5 hour and 1.0 hour and for non-thermally treated specimens for any given exposure time were equivalent. In addition, cohesive failure (failure within adhesive) was observed for each specimen under each treatment condition. The specimens that were bonded and then thermally treated for 3 hours, failed in the oxide coating immediately upon insertion of the wedge. Surface analysis results for debonded specimens suggest that the process leading to failure is the formation of fluorine-containing materials within the oxide. The measured average activation energy for the formation of aluminum fluoride species is 149 kJ/mol. The high activation energy suggests that the rate of aluminum fluoride formation is substantial only at high temperatures. In summary, the presence of fluorides in the anodic oxide coatings prior to bonding is detrimental to the overall strength and durability of adhesively bonded chromic acid anodized Ti-6Al-4V joints which have been exposed to high temperatures (350°C-399°C). / Ph. D.
5

Contribution à la compréhension de la fonctionnalisation mécanique de surface des composites à matrice thermoplastique (PEEK) destinés à l'assemblage par collage

Ourahmoune, Reda El Hak 20 December 2012 (has links)
L’assemblage des matériaux composites thermoplastiques tel que le PEEK est l’une des problématiques majeure de l’industrie aéronautique. Actuellement, différentes techniques sont développées pour assurer l’assemblage structural de ces matériaux, tels que : le soudage, le rivetage, le boulonnage et le collage. Les enjeux industriels majeurs sont principalement, à l’heure actuelle, la conception des structures simplifiées au maximum afin de réduire les coûts de production et la réduction des consommations énergétiques. A cet effet, l’industrie aéronautique fait fréquemment appel à l’assemblage par collage en raison de nombreux avantages qu’il offre (gain de poids, distribution régulière des contraintes, absence de trous) par rapport aux autres techniques existantes. Le PEEK (PolyEtherEtherKetone), est un matériau polymère semi-cristallin thermoplastique, à hautes performances. Ce matériau est souvent utilise dans l’industrie aéronautique principalement renforce par des fibres de carbone ou de verre. Cependant, du fait du niveau élevé de sa résistance chimique l’assemblage par collage du PEEK et de ses composites nécessitent des traitements de surfaces appropries et optimises. Or, afin d’obtenir un system collé à haute performance, la problématique scientifique et technique doit être concentrée sur la jonction entre les éléments à assembler. En effet, la qualité de cette jonction est de la plus haute importance car elle doit permettre un transfert optimal des contraintes thermomécaniques lorsque l’assemblage est soumis a ses conditions d'usage. Cette étude concerne donc, l’amélioration des propriétés mécaniques (monotones et cycliques) de l’assemblage par collage PEEK/PEEK. Dans cette optique, un traitement de surface simple de mise en œuvre est proposé. Ce traitement est le sablage, qui permet la modification topographique (morphologique) de surface. La compréhension des différents phénomènes d’interaction aux interfaces intervenant dans l’amélioration du comportement mécanique du joint de colle et qui s’inscrit dans la triptyque : « Rhéologie, Physico-chimie et topographie », est l’enjeu scientifique majeur dans cette thèse. Dans un premier temps, l’influence des paramètres du traitement tels que le temps de projection, la taille des particules, sur la morphologie de surface de différents matériaux à base de PEEK a été analysée, permettant ainsi d’établir la corrélation entre les paramètres morphologiques et les mécanismes de modification topographique de surface intervenant pendant le traitement de surface. L’un des facteurs clefs pour la compréhension des mécanismes d’interaction entre l’adhésif liquide et le substrat solide est la mouillabilité. L’analyse du comportement au mouillage en fonction des différents paramètres du traitement a été réalisée. La mouillabilité des surfaces traitées est fortement affectée par la rugosité de surface créée après ce traitement. La relation entre les paramètres morphologiques et la mouillabilité a été discutée. Enfin, l’influence des paramètres du traitement par sablage sur le comportement mécanique monotone et à long terme (essais de fatigue) sur la résistance du joint colle a été étudié à l’aide d’essais de cisaillement sur éprouvettes à simple recouvrement. Ceci a conduit, à la proposition de paramètres morphologiques surfaciques spécifiques pour l’optimisation du comportement mécanique du joint de colle des matériaux composites à matrice PEEK. / One of most problematic in the aeronautical industries is the structural joining of the high performance thermoplastic composites like PEEK composites. Actually, a lot of technologies are used for joining thermoplastic composites like welding, bolting, riveting, fastening and adhesive bonding. Due to the various advantages that characterize the adhesive bonding method, such an uniform stress distribution along the joint, weight‐light and cost reduction, makes this technique more desirable to join thermoplastic composites materials compared to the other joining techniques. PEEK (PolyEtherEtherKetone) is a semi‐crystalline thermoplastic material with high performance. This material is wildly used in aeronautical industries, principally, reinforced with carbon of glass fibres. However, its high chemical resistance makes the adhesive bonding of PEEK and its composites difficult and therefore an appropriate and optimised surface treatment is necessary. In the aim to obtain a bonded system with high performance, scientific and technical problematic should be focussed on the junction between adherents. Indeed, the quality of this junction is of utmost importance because it must allow optimum transfer of thermomechanical stresses when the assembly is subject to its terms of use. Though, at this time it is well known that thermoplastic composite materials are difficult to bond with‐out surface treatment. This study, therefore, relates to the improvement of mechanical properties (monotonic and cyclic) of the adhesive bonding system PEEK / PEEK. In this context, a surface treatment, easy to implement, is proposed. This surface treatment is sandblasting, which enables surface topographic (morphological) modifications. Understanding of various phenomena of interfaces interaction involved in the improvement of the mechanical behavior of the adhesive joint and is part of the triptych "Rheology, Physico‐chemistry and topography" is the major scientific challenge in this thesis. Initially, the influence of processing parameters such as the projection time, the particle size on surface morphology of various materials based on PEEK was analysed, thus allowing establishing the correlation between morphological parameters and modification mechanisms involved during surface treatment surface. One of the key factors for understanding the mechanisms of interaction between the liquid adhesive and the solid substrate is wettability. The analysis of the wetting behavior as a function of various parameters of the treatment was performed. The wettability of treated surfaces is strongly affected by surface roughness created after this treatment. The relationship between morphological parameters and wettability was discussed. Finally, the influence of sandblasting processing parameters on the mechanical behavior in monotoning and long‐term (fatigue tests) of the adhesive joint strength was studied, using single lap shear tests specimens. This has led to the proposal of specific surface morphological parameters for the optimization of the mechanical behavior of the adhesive joint of PEEK and its composites.

Page generated in 0.0739 seconds