• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Anchor Systems for FRCM Retrofits

Zahmak, Abdulla 16 June 2023 (has links)
Fabric Reinforced Cementitious Matrix (FRCM) composites utilize a mineral mortar matrix as a substitute for epoxy resin that is used for Fibre Reinforced Polymer (FRP). This eliminates issues associated with the low thermal compatibility of FRP with concrete, susceptibility to UV radiation, and sensitivity to high temperatures in which organic polymers undergo vitrification. This study discussed the effect of varying parameters like the number of Carbon-FRCM (C-FRCM) layers (1, 2 and 3 layers), different anchorage configurations (non-anchored, spike anchor, wrap anchor and mechanical anchor), bond length (300 or 200 mm), and the fabric type (unidirectional and bidirectional) on the direct shear behaviour of C-FRCM composites bonded to a concrete substrate, especially the fibre-matrix bond which is the most common debonding interface of FRCM composites. Calibrated models of the bond – slip behaviour are provided based on the fabric type and number of fabric layers. The results indicate that the anchor type and the overall composite thickness are the main factors that control the failure mode of the composite. All properly anchored specimens using spike and wrap anchors failed due to fabric rupture. Moreover, a considerable number of the non-anchored specimens failed due to composite-substrate debonding, although premature fabric rupture was frequently observed. Furthermore, specimens with bidirectional fabric demonstrated shallower penetration of the strain into the composite which may be due to the horizontal fabric strands providing some anchorage for the longitudinal strands. They also exhibited slip initiation at a higher stress compared to unidirectional specimens. In addition, slip initiation stress of unidirectional specimens decreased with more fabric layers which may indicate that the additional layers have a lower bond efficiency. For the same reason, specimens with three layers of fabric generally experienced deeper strain penetration into the composite than one-layered or two-layered specimens regardless of the anchor type. The results also indicate that the use of bidirectional fabric and anchorage systems decreases the strain penetration into the composite and correspondingly, the effective length is shortened. Surface strain measurements captured using digital image correlation generally did not match the internal fabric strain values obtained from strain gauges.

Page generated in 0.1337 seconds