• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pseudo-lignin chemistry in pretreatment of biomass for cellulosic biofuel production

Hu, Fan 12 January 2015 (has links)
Pseudo-lignin, which can be broadly defined as aromatic material that yields a positive acid-insoluble (Klason) lignin value, has been reported to generate from biomass polysaccharides during dilute acid pretreatment (DAP). To investigate the fundamental chemistry of pseudo-lignin, a series of state-to-art analytical techniques including GPC, FT-IR and ¹³C NMR were applied to characterize pseudo-lignin extracted from poplar α-cellulose and holocellulose after DAP. The results showed that pseudo-lignin is polymeric (Mn ~ 1000 g/mol; Mw ~ 5000 g/mol) and consists of carbonyl, carboxylic, aromatic, methoxy and aliphatic structures, which can be produced from both dilute acid-treated cellulose and hemicellulose. During DAP, the hydrolysis of polysaccharides, which leads to some release of monosaccharides, and their subsequent dehydration reactions to form furfural and 5-hydromethylfurfural (HMF) takes place. Further rearrangements of furfural and/or HMF can produce aromatic compounds, which undergo further polymerization and/or polycondensation reactions to form pseudo-lignin. More importantly, pseudo-lignin was revealed to bind with cellulase enzymes unproductively and significantly retard enzymatic conversion of cellulose. As compared to native lignin after DAP, the inhibition effect arise from pseudo-lignin is much stronger, which clearly indicates pseudo-lignin formation should be avoided during DAP. Process optimization study indicated that addition of dimethyl sulfoxide (DMSO) to the DAP reaction medium can effectively increase sugar recovery and reduce pseudo-lignin formation, even under high-severity pretreatment conditions. The pseudo-lignin suppression property of DMSO has been attributed to the preferential arrangement of DMSO in the vicinity of the C1 carbon of the HMF molecule, thereby protecting HMF from further reactions to form pseudo-lignin.
2

Effect of lignin content and structural change during treatment on poplar for biofuel and biomaterial production

Sun, Qining 27 May 2016 (has links)
Understanding the lignin effect and related structural parameters relevant to the recalcitrance of the plant cell wall and the individual and cooperative effects on enzymatic saccharification are vital for improving current processing and conversion methods for cellulosic biofuels. Data were collected from several pretreatment technologies (Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments) on cellulose ultrastructure, partial delignification followed by dilute acid pretreatment, dilute acid pretreatment of enzymatic isolated lignin, and melt rheology test of organo-solv lignin. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which however especially at short residence time displayed relatively high enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Lignin acted as a barrier which restricted cellulose crystallinity increase and cellulose crystallite growth during dilute acid pretreatment, and that partial delignification instead of complete lignin removal during DAP would benefit the increase of sugar yield. Furthermore, a deeper understanding of the structural change of lignin in the absence of cellulose-hemicellulose matrix during dilute acid pretreatment confirmed that delignification had the most beneficial effect in poplar, but for switchgrass was the xylan removal. In addition, investigation on the structural change of organo-solv lignin during melt rheology test indicated that high purity lignin isolated from plant biomass with the lowest S/G (syringyl/guaiacyl) ratios will exhibit superior processing performance characteristics to produce high-quality carbon fibers. These findings can aid both in the development of improved enzymes that contain activities to decompose recalcitrant structures and in the design of various processing conditions that efficiently convert specific biomass feedstock into sugars. They can also help in the design of new chemical modifications on lignin and innovative biosynthesis strategies for producing linear-fiber-forming lignin with high-performance.
3

Lignin Degradation and Dilute Acid Pretreatment for Cellulosic Alcohol Production

Cheng, Lei 30 September 2010 (has links)
No description available.
4

Relation morphologie/réactivité des substrats lignocellulosiques : impact du prétraitement par explosion à la vapeur / Morphology / Reactivity relationship of lignocellulosic substrates : impact of steam explosion pretreatment

Loustau Cazalet, Charlotte 10 December 2018 (has links)
Dans un contexte de transition énergétique et de lutte contre le réchauffement climatique, la production d’éthanol de seconde génération semble une voie très prometteuse afin de réduire notre dépendance aux énergies fossiles. Il existe 3 étapes clés pour la production de ce nouveau biocarburant : le prétraitement qui permet de déstructurer la matrice lignocellulosique afin de rendre la cellulose plus accessible aux enzymes, l’hydrolyse enzymatique qui a pour but de produire des sucres fermentescibles et la fermentation qui permet de transformer ces sucres en éthanol. Actuellement, le prétraitement considéré comme le plus efficace, et principalement retenu par les industriels, est le prétraitement par explosion à la vapeur. Cependant, certains aspects comme les effets physicochimiques induits par le prétraitement ainsi que leurs impacts sur les caractéristiques de la biomasse prétraitée restent encore mal compris.Schématiquement, le prétraitement par explosion vapeur peut se décomposer en deux étapes : la première se rapproche d’une cuisson acide réalisée à 150-200°C durant 5 30 min et permet principalement l’hydrolyse des hémicelluloses, alors que la seconde est une détente explosive qui permet un éclatement mécanique du substrat rendant potentiellement la cellulose plus réactive à l’hydrolyse enzymatique. Globalement les effets de ce type de prétraitement sur la biomasse lignocellulosique sont aujourd’hui bien connus mais la compréhension des différents phénomènes physico-chimiques ayant lieu en son sein reste limitée. En effet le découplage de l’étape de cuisson et de l’étape de détente est délicat car, la température du réacteur (qui impacte principalement les réactions de cuisson) est directement liée à sa pression (qui impacte principalement la détente) par la thermodynamique des phases.Ce travail de thèse se propose donc de mieux appréhender l’ensemble des phénomènes physico-chimiques ayant lieu durant le prétraitement par explosion à la vapeur en s’appuyant notamment sur une discrimination expérimentale des phénomènes chimiques (réactions de dépolymérisation) et des phénomènes physiques (détente explosive) ainsi que sur une caractérisation multi-techniques et multi-échelles de la biomasse lignocellulosique obtenue après ce type de prétraitement. L’objectif est aussi de comprendre quelles sont les principales caractéristiques de la biomasse qui expliquent les différences de réactivité observées lors de l’étape d’hydrolyse enzymatique et d’expliquer l’impact du prétraitement par explosion à la vapeur sur les propriétés physicochimiques et donc sur la réactivité. / In a context of energy transition and climate change challenge, the production of second generation ethanol seems to be a very promising way to reduce our dependence on fossil fuels. There are 3 key steps for producing this new biofuel: pretreatment to decompose the lignocellulosic biomass and to make cellulose more accessible to enzyme attacks, enzymatic hydrolysis to produce fermentable sugars and fermentation to convert these sugars into ethanol. Currently, the pretreatment considered to be the most efficient, and mainly retained for industrialization, is the steam explosion pretreatment. However, some aspects such as the physicochemical effects induced by pretreatment and their impacts on the characteristics of pretreated biomass remain misunderstood.Schematically, the steam explosion pretreatment can be separated into two stages: the first is similar to an acid cooking carried out at 150-200°C during 5-30 min and allows mainly the hydrolysis of hemicelluloses, while the second is an explosive release which allows a mechanical bursting of the substrate potentially making the cellulose more reactive to enzymatic hydrolysis. As a whole, the effects of this type of pretreatment on lignocellulosic biomass are now well known, but the understanding of the different physicochemical phenomena occurring within it remains limited. Indeed, decoupling the cooking stage and the expansion stage is complicated because the reactor temperature (which mainly impacts the cooking reactions) is directly related to its pressure (which mainly impacts the explosive release) by the phase thermodynamics.This thesis work aims to better understand all the physicochemical phenomena occurring during a steam explosion pretreatment, based in particular on experimental discrimination of chemical phenomena (depolymerization reactions) and physical phenomena (explosive release) as well as on a multi-technical and multi-scale characterization of the lignocellulosic biomass obtained after this type of pretreatment. The objective is also to understand what are the main characteristics of biomass that explain the differences in reactivity observed during the enzymatic hydrolysis step and to explain the impact of the steam explosion pretreatment on the physicochemical properties and therefore the reactivity.

Page generated in 0.1113 seconds