• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic optimization of a planar solid oxide fuel cell

Ford, James Christopher 02 November 2012 (has links)
Solid oxide fuel cells (SOFCs) are high temperature (600C-1000C) composite metallic/ceramic-cermet electrochemical devices. There is a need to effectively manage the heat transfer through the cell to mitigate material failure induced by thermal stresses while yet preserving performance. The present dissertation offers a novel thermodynamic optimization approach that utilizes dimensionless geometric parameters to design a SOFC. Through entropy generation minimization, the architecture of a planar SOFC has been redesigned to optimally balance thermal gradients and cell performance. Cell performance has been defined using the 2nd law metric of exergetic efficiency. One constrained optimization problem was solved. The optimization sought to maximize exergetic efficiency through minimizing total entropy production while constraining thermal gradients. Optimal designs were produced that had exergetic efficiency exceeding 92% while maximum thermal gradients were between 219 C/m and 1249 C/m. As the architecture was modified, the magnitude of sources of entropy generation changed. Ultimately, it was shown that the architecture of a SOFC can be modified through thermodynamic optimization to maximize performance while limiting thermal gradients. The present dissertation highlights a new design methodology and provides insights on the connection between thermal gradients, performance, sources of entropy generation, and cell architecture.
2

DESIGN METHODS FOR LARGE RECTANGULAR INDUSTRIAL DUCTS

Thanga, Tharani 10 1900 (has links)
<p>A large rectangular industrial duct consists of plates stiffened with parallel wide flange sections. The plates along with stiffeners acts to resist the pressure loads and to carry other loads to the supports. The behaviours of the components of large industrial ducts are significantly different from the behaviours on which the current design methods are based on. Investigation presented herein deals with the design methods for spacing stiffeners, proportioning stiffeners and calculating shear resistance of side panel.</p> <p>Current method of spacing stiffeners is based on large deflection plate theory. A parametric study was conducted on dimensionless parameters identified in order to benefit from membrane action in partially yielding plate for spacing stiffeners. Design equations were established in terms of dimensionless pressure, plate slenderness and normalized out-of-plane deflection for three cases namely; 0%, 16.5% and 33% of through thickness yielding of the plate. Results show that approximately 50% increase in stiffener spacing when yielding of 16.5% of thickness is permitted.</p> <p>Under suction type pressure load, the unsupported compression flange and restrained tension flange lead to distortional buckling of the stiffeners. The current methods do not address distortional buckling adequately. A parametric study on dimensionless parameters governing the behaviour and strength of stiffened plat panels was conducted. The study indicated that the behaviour and strength of the stiffened panels could be a function of web slenderness and overall slenderness of the stiffener. The study also identified the slenderness limit of stiffener web for which the stiffener reaches the yield moment capacity. This study demonstrated the conservatism of current method. Finally a method was established to calculate the strength of stiffened plate panel subjected lateral pressure.</p> <p>Side panels adjacent to the supports transfer large amount of shear to the supports and, in addition, resist internal pressure. Currently the design of side panels for shear is based on the methods used for the web of fabricated plate girders. The behaviour and the characteristics between the web of plate girder and the thin side panels are significantly different. A parametric study was conducted on dimensionless parameters identified. It was concluded that the plate slenderness dominates the normalized shear strength of stockier side panels. The aspect ratio and plate slenderness influence the normalized shear strength of slender side panels. Design methods to calculate the shear strength of side panels were proposed.</p> / Doctor of Philosophy (PhD)

Page generated in 0.1253 seconds