• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle de forêts enracinées sur des cycles et modèle de perles via les dimères / Cycle-rooted-spanning-forest model and bead model via dimers

Sun, Wangru 07 February 2018 (has links)
Le modèle de dimères, également connu sous le nom de modèle de couplage parfait, est un modèle probabiliste introduit à l'origine dans la mécanique statistique. Une configuration de dimères d'un graphe est un sous-ensemble des arêtes tel que chaque sommet est incident à exactement une arête. Un poids est attribué à chaque arête et la probabilité d'une configuration est proportionnelle au produit des poids des arêtes présentes. Dans cette thèse, nous étudions principalement deux modèles qui sont liés au modèle de dimères, et plus particulièrement leur comportements limites. Le premier est le modèle des forêts couvrantes enracinées sur des cycles (CRSF) sur le tore, qui sont en bijection avec les configurations de dimères via la bijection de Temperley. Dans la limite quand la taille du tore tend vers l'infini, la mesure sur les CRSF converge vers une mesure de Gibbs ergodique sur le plan tout entier. Nous étudions la connectivité de l'objet limite, prouvons qu'elle est déterminée par le changement de hauteur moyen de la mesure de Gibbs ergodique et donnons un diagramme de phase. Le second est le modèle de perles, un processus ponctuel sur $\mathbb{Z}\times\mathbb{R}$ qui peut être considéré comme une limite à l'échelle du modèle de dimères sur un réseau hexagonal. Nous formulons et prouvons un principe variationnel similaire à celui du modèle dimère \cite{CKP01}, qui indique qu'à la limite de l'échelle, la fonction de hauteur normalisée d'une configuration de perles converge en probabilité vers une surface $h_0$ qui maximise une certaine fonctionnelle qui s'appelle "entropie". Nous prouvons également que la forme limite $h_0$ est une limite de l'échelle des formes limites de modèles de dimères. Il existe une correspondance entre configurations de perles et (skew) tableaux de Young standard, qui préserve la mesure uniforme sur les deux ensembles. Le principe variationnel du modèle de perles implique une forme limite d'un tableau de Young standard aléatoire. Ce résultat généralise celui de \cite{PR}. Nous dérivons également l'existence d'une courbe arctique d'un processus ponctuel discret qui encode les tableaux standard, defini dans \cite{Rom}. / The dimer model, also known as the perfect matching model, is a probabilistic model originally introduced in statistical mechanics. A dimer configuration of a graph is a subset of the edges such that every vertex is incident to exactly one edge of the subset. A weight is assigned to every edge, and the probability of a configuration is proportional to the product of the weights of the edges present. In this thesis we mainly study two related models and in particular their limiting behavior. The first one is the model of cycle-rooted-spanning-forests (CRSF) on tori, which is in bijection with toroidal dimer configurations via Temperley's bijection. This gives rise to a measure on CRSF. In the limit that the size of torus tends to infinity, the CRSF measure tends to an ergodic Gibbs measure on the whole plane. We study the connectivity property of the limiting object, prove that it is determined by the average height change of the limiting ergodic Gibbs measure and give a phase diagram. The second one is the bead model, a random point field on $\mathbb{Z}\times\mathbb{R}$ which can be viewed as a scaling limit of dimer model on a hexagon lattice. We formulate and prove a variational principle similar to that of the dimer model \cite{CKP01}, which states that in the scaling limit, the normalized height function of a uniformly chosen random bead configuration lies in an arbitrarily small neighborhood of a surface $h_0$ that maximizes some functional which we call as entropy. We also prove that the limit shape $h_0$ is a scaling limit of the limit shapes of a properly chosen sequence of dimer models. There is a map form bead configurations to standard tableaux of a (skew) Young diagram, and the map is measure preserving if both sides take uniform measures. The variational principle of the bead model yields the existence of the limit shape of a random standard Young tableau, which generalizes the result of \cite{PR}. We derive also the existence of an arctic curve of a discrete point process that encodes the standard tableaux, raised in \cite{Rom}.
2

Superconductivity in two-dimensions from the Hubbard model to the Su-Schrieffer-Heeger model

Roy, Dipayan 06 August 2021 (has links)
We study unconventional superconductivity in two-dimensional systems. Unbiased numerical calculations within two-dimensional Hubbard models have found no evidence for long-range superconducting order. Most of the two-dimensional theories suggest that the superconducting state can be obtained by destabilizing an antiferromagnetic or spin-liquid insulating state. An antiferromagnet is a half-filled system because each site has one electron or hole. However, in anisotropic triangular lattices, numerical calculation finds pairing enhancement at quarter-filling but no long-range superconducting order. Many organic superconductors are dimerized in nature. Such a dimer lattice is effectively half-filled because each dimer has one electron or hole. Some theories suggest that magnetic fluctuation in such a system can give superconductivity. However, at zero temperature, we performed density matrix renormalization group (DMRG) calculations in such a system, and we find no superconducting long-range order. We also find that the antiferromagnetic order is not necessary to get a superconducting state. Failure in explaining superconductivity in two-dimensional systems suggests that only repulsive interactions between electrons are not sufficient, and other interactions are required. The most likely candidate is the electron-phonon interaction. However, existing theories of superconductivity emphasize either electron-electron or electron-phonon interactions, each of which tends to cancel the effect of the other. We present direct evidence from quantum Monte Carlo calculations of cooperative, as opposed to competing, effects of electron-electron and electron-phonon interactions within the frustrated Hubbard Hamiltonian, uniquely at the band-filling of one-quarter. Bond-coupled phonons and the onsite Hubbard U cooperatively reinforce d-wave superconducting pair-pair correlations at this filling while competing with one another at all other densities. Our work further gives new insight into how intertwined charge-order and superconductivity appear in real materials.

Page generated in 0.0426 seconds