Spelling suggestions: "subject:"arganic superconductors"" "subject:"arganic uperconductors""
1 |
Magnetic properties of low-dimensional solidsObertelli, S. D. January 1988 (has links)
No description available.
|
2 |
Infrared optical properties of the organic superconductor (BEDT-TTF)₂[Cu(NCS)₂] and the search for the superconducting gapKornelsen, Kevin E. January 1990 (has links)
The optical properties of the 10.4 K organic superconductor, κ-{BEDT—TTF)₂[CU-(NCS)₂], are the subject of this thesis. This organic superconductor is a crystalline solid consisting of planes of BEDT-TTF molecules separated by planes of Cu{NCS)₂ anions. The arrangement of molecules results in electrical two-dimensionality, with high conductivity within the planes of BEDT-TTF molecules and poor conductivity in the perpendicular direction. Until the recent discovery of an organic superconductor with TC = 11.5 K, the 10.4 K transition of (BEDT-TTF)₂[Cu(NCS)₂] was the highest in the class of organic metals.
Optical properties of superconductors have played an important role in analysis of their unusual properties. Using single crystals of (BEDT—TTF)₂[Cu(NCS)₂] and light polarized within the highly conducting plane, I have measured both specular reflectivity and bolometric absorption over a wide region of the infrared spectrum. The reflectivity measurements cover most of the far and mid-infrared for both protonated and deuter-ated compounds, with sample temperatures between 300 K and 6.5 K. The resulting spectra show contributions from electronic interband transitions, intraband transitions, and molecular phonon vibrations.
A search for the superconducting energy gap was undertaken using the bolometric technique to measure the sample absorption at far-infrared energies. These measurements were performed at temperatures below Tc and cover the part of the spectrum where condensation of electrons into superconducting Cooper pairs should be directly observable optically. On other materials, measurements in this part of the spectrum have directly revealed the binding energy for the superconducting electron pairs, and have been instrumental in showing that details of the electron-phonon interactions are very important in superconducting systems. In the spectra which we have measured, any effect of the superconducting transition is overwhelmed by other contributions to the absorption in the far-infrared energy region. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
3 |
Bond Patterns in the Ground States of Quasi-One Dimensional 1/4-Filled Organic SuperconductorsWard, Andrew Bryan 09 May 2015 (has links)
Organic conductors are of considerable interest to the condensed matter community. In contrast to conventional metal conductors, these organic materials allow for large variability in their construction giving both quasi-one and two dimensional behavior. Organic superconductors also give useful insight into the properties of general superconductivity as well as insight into the properties of strongly correlated electronic materials. These materials exhibit interesting phenomena like spin-Peierls, antiferromagnetic, and superconducting phases. The aim of this thesis is not only to inform the reader of various studies into organic superconductors but also to advance research into these materials through massively parallel numerical methods. This thesis will cover two studies: a quantum Monte Carlo study on an infinite one-dimensional chain and an exact diagonalization study on a 16-site two-dimensional lattice. These studies will be used to better understand the charge and bond behavior of quasi-one dimensional 1/4illed organic superconductors.
|
4 |
The Paired Electron Crystal, Exotic Phases and Phase Transitions in Strongly Correlated Electron SystemsDayal, Saurabh 11 August 2012 (has links)
Almost a century after its discovery, superconductivity (SC) is still the most challenging and fascinating topic in condensed matter physics. Organic superconductors show exotic phases and phase transitions with a change in temperature or pressure. In this dissertation, we studied the phases and phase-transitions in one-dimensional (1D) and two-dimensional (2D) organic materials. This dissertation itself is a group of three sub-projects. In project (i), we studied the properties of a novel state “paired electron crystal” (PEC) in the quarterfilled Hubbard model to understand the phases and properties of 2D organic materials. We also studied the effects of charge and spin frustration on the 2D strongly correlated quarterfilled band. Our conclusions are based on exact diagonalization (ED) studies that include electron-electron and adiabatic electron-phonon interactions. For moderate to strong frustration, the dominant phase is a novel spin-singlet PEC. We discuss the implications of the PEC concept for understanding several classes of quarterilled band materials that display unconventional superconductivity. In project (ii), we studied the thermodynamics of a zigzag ladder model, applicable to quasi-1D organic materials. Using the quantum Monte Carlo (QMC) method, we studied the thermodynamics of charge ordering in quarterilled quasi-1D organic charge transfer solids (CTS). Previous theoretical studies on these CTS have focused on ground state properties or purely 1D systems. In the zigzag ladder, no separate high-temperature ordering is expected; instead the ladder is metallic at high temperature, and as temperature decreases, a single transition to the PEC state with a spin-gap takes place. In project (iii), we studied superconducting pairing correlation and metal-insulator transitions in the halfilled Hubbard model. We employed the Hubbard model and used the path integral renormalization group (PIRG) method for this study. Antiferromagneticmediated SC was suggested for small to large frustration in anisotropic triangular lattices. Previous work on the halfilled Hubbard model using the ED method was successful in showing the absence of d-wave SC on a small anisotropic triangular lattice. We extended this study to larger lattices to investigate the existence of long-range order of superconducting pair-pair correlations. We also show the absence of d-wave SC in this model on larger lattices.
|
5 |
Computational Study of Superconducting Correlations in Frustrated LatticesDe Silva, W Wasanthi Priyanwada 09 December 2016 (has links)
The first project of this dissertation focuses on an extension of the Path Integral Renormalization Group (PIRG) method to the extended Hubbard model (EHM) including on-site U and a nearest-neighbor interaction V. The PIRG method is an efficient numerical algorithm for studying ground state properties of strongly correlated electron systems. A major advantage of the PIRG is that it is free from the Fermion sign problem. Many observables can be calculated using Wick’s theorem. The EHM is particularly important in models of charge-transfer solids (CTS) and at 1/4illing the V interaction drives a charge-ordered state. We test the method with comparisons to small two-dimensional (2D) clusters and long one-dimensional (1D) chains. The second project of this dissertation focuses on the Coulomb enhancement of superconducting pair-pair correlations in frustrated quarterilled band lattice systems. A necessary condition for superconductivity (SC) driven by electron correlation is that electronelectron (e-e) interactions enhance long range superconducting pair-pair correlations relative to the noninteracting limit. We present high-precision numerical calculations within the 2D Hubbard model on up to 100 sites showing that long range superconducting pair correlations are enhanced only for electron density 0.5. At all other fillings e-e interactions suppress pair correlations. We argue that the enhancement of pairing is due to a tendency to form local spin singlets at density 0.5. Our work provides a key ingredient to the mechanism of SC in the 2D organic-CTS superconductors, as well as in many other unconventional superconductors with frustrated crystal lattices and density 0.5. In the third project we apply our proposed concept to a real material, kappa-(BEDTTTF)2X. We present numerical results for 32 and 64 site lattices using the Constrained Path Monte Carlo and PIRG methods over a wide range of carrier density. We show that superconducting pair-pair correlations in this model are enhanced by e-e interactions for d-wave pairing symmetry uniquely for a hole density close to quarterilling. Our results indicate that this enhancement of superconductivity is not related to the presence of antiferromagnetic order, but to the strong tendency to spin-singlet formation in the quarterilled band.
|
6 |
The optical properties of pyrochlore oxides R(2) molybdenum(2) oxygen(7-delta) (R: samarium, gadolinium, and holmium), the heavy-fermion uranium nickel(2)aluminum(3), and the organic conductor (tetramethyltetraselenafulvene)(2) chlorine oxygen(4).Cao, Ning. Timusk, T. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 57-03, Section: B, page: 1867. Adviser: T. Timusk.
|
7 |
Electronic structure of selected aromatic hydrocarbon systems investigated with electron energy-loss spectroscopyRoth, Friedrich 27 May 2013 (has links) (PDF)
Organic materials with fascinating/intriguing electronic properties have been the driving force for many research activities in the past, and in particular for important progress in materials science covering both new functional materials as well as theoretical developments. In addition, charge transfer, i. e., the addition or removal of charges to or from molecules in organic solids is one route to modify and control their electronic properties. Recently, the discovery of superconductivity in several alkali metal intercalated hydrocarbon systems (picene, phenanthrene, coronene and 1,2;8,9-dibenzopentacene) with rather high transition temperatures has opened a new chapter in organic material science as well as solid-state physics.
The search for a microscopic understanding of the mechanism that drives materials superconducting always has initiated a large number of scientific activities, and there are numerous examples where these activities have provided major advancement. A basic foundation of this understanding is the knowledge of the electronic properties of the material under investigation.
In this context, this thesis reports first, very detailed insight into the electronic structure of both undoped as well as potassium doped picene, coronene and 1,2;8,9-dibenzopentacene using electron energy-loss spectroscopy (EELS) as main experimental method. Additionally, also photoemission spectroscopy experiments have been performed to investigate the occupied electronic density of states close to the chemical potential. In order to learn more about the electronic structure we have compared the results we obtained from EELS and photoemission spectroscopy with theoretical calculations based on Density functional theory (DFT) using the local-density approximation (LDA).
We identify the peculiar case of very close lying conduction bands that upon doping harbour the electrons that form the Cooper-pairs in the superconducting state. Moreover, the presented data display substantial changes in the electronic excitation spectrum upon doping, whereas in the doped case the appearance of one new peak (for picene) and several new peaks (for coronene and 1,2;8,9-dibenzopentacene) in the former optical gap is reported. By using a Kramers–Kronig analysis (KKA) it is possible to gain information about the nature of this doping introduced excitations. In particular, in case of picene, the new low energy feature can be assigned to a charge carrier plasmon. Interestingly, this plasmon disperses negatively upon increasing momentum transfer, which deviates significantly from the traditional picture of metals based on the homogeneous electron gas. The comparison with calculations of the loss function of potassium intercalated picene shows how this finding is the result of the competition between metallicity and electronic localization on the molecular units.
Furthermore, core level excitation measurements show the reduction of the lowest lying C 1s excitation feature, which clearly demonstrates that potassium intercalation leads to a filling of the conduction bands with electrons. Additionally, the measurements of potassium intercalated 1,2;8,9-dibenzopentacene clearly indicate the formation of particular doped phases with compositions K_xdibenzopentacene (x = 1, 2, 3), whereas the data suggest that K_1dibenzopentacene has an insulating ground state with an energy gap of about 0.9 eV, while K_2dibenzopentacene and K_3dibenzopentacene might well be metallic, because of the absent of an energy gap in the electronic excitation spectra.
Interestingly, a comparison of the photoemission as well as EELS spectra of undoped 1,2;8,9-dibenzopentacene and pentacene reveal that the electronic states close to the Fermi level and the electronic excitation spectra of the two materials are extremely similar, which is due to the fact, that the additional two benzene rings in 1,2;8,9-dibenzopentacene virtually do not contribute to the delocalized pi molecular orbitals close to the Fermi level. This close electronic similarity is in contrast to the behavior upon potassium doping, where evidence for a Mott state has been reported in the case of pentacene.
A comparison of the low energy excitation spectra of chrysene with picene (phenacenes) as well as tetracene with pentacene (acenes) crystals reveal a significant difference between the former and the latter two materials. While for the phenacenes (zigzag arrangement) the excitation onset is characterized by up to five weak excitation features with only small anisotropy and without visible Davydov splitting within the a*, b*-planes, the acene (linear arrangement) spectra are dominated by a large excitation close to the onset and a sizable Davydov splitting. The presented data show further that the spectral shape of the pentacene excitation spectrum provides clear evidence for a large admixture of molecular Frenkel-type excitons with charge-transfer excitations resulting in excited states with a significantly mixed character. This conclusion is in good agreement with recent advanced calculations which predicted a charge-transfer admixture to the lowest singlet excitation which is significantly dependent upon the length of the acene molecules. Moreover, also for picene and chrysene we observe differences which point towards an increased charge-transfer contribution to the singlet excitation spectrum in the former.
Finally, investigations of the electronic properties of undoped and potassium doped chrysene, a close relative of picene, show that the doping introduced changes are in a similar range such as observed in case of picene. Interestingly, due to the analogy between the observed changes in the electronic structure upon potassium doping between chrysene and picene and further similarity in the crystal structure we speculate that chrysene is a promising candidate for another aromatic hydrocabon superconductor.
|
8 |
Dynamic electron-phonon interactions in one-dimensional modelsHardikar, Rahul Padmakar, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
|
9 |
Electronic structure of selected aromatic hydrocarbon systems investigated with electron energy-loss spectroscopyRoth, Friedrich 22 February 2013 (has links)
Organic materials with fascinating/intriguing electronic properties have been the driving force for many research activities in the past, and in particular for important progress in materials science covering both new functional materials as well as theoretical developments. In addition, charge transfer, i. e., the addition or removal of charges to or from molecules in organic solids is one route to modify and control their electronic properties. Recently, the discovery of superconductivity in several alkali metal intercalated hydrocarbon systems (picene, phenanthrene, coronene and 1,2;8,9-dibenzopentacene) with rather high transition temperatures has opened a new chapter in organic material science as well as solid-state physics.
The search for a microscopic understanding of the mechanism that drives materials superconducting always has initiated a large number of scientific activities, and there are numerous examples where these activities have provided major advancement. A basic foundation of this understanding is the knowledge of the electronic properties of the material under investigation.
In this context, this thesis reports first, very detailed insight into the electronic structure of both undoped as well as potassium doped picene, coronene and 1,2;8,9-dibenzopentacene using electron energy-loss spectroscopy (EELS) as main experimental method. Additionally, also photoemission spectroscopy experiments have been performed to investigate the occupied electronic density of states close to the chemical potential. In order to learn more about the electronic structure we have compared the results we obtained from EELS and photoemission spectroscopy with theoretical calculations based on Density functional theory (DFT) using the local-density approximation (LDA).
We identify the peculiar case of very close lying conduction bands that upon doping harbour the electrons that form the Cooper-pairs in the superconducting state. Moreover, the presented data display substantial changes in the electronic excitation spectrum upon doping, whereas in the doped case the appearance of one new peak (for picene) and several new peaks (for coronene and 1,2;8,9-dibenzopentacene) in the former optical gap is reported. By using a Kramers–Kronig analysis (KKA) it is possible to gain information about the nature of this doping introduced excitations. In particular, in case of picene, the new low energy feature can be assigned to a charge carrier plasmon. Interestingly, this plasmon disperses negatively upon increasing momentum transfer, which deviates significantly from the traditional picture of metals based on the homogeneous electron gas. The comparison with calculations of the loss function of potassium intercalated picene shows how this finding is the result of the competition between metallicity and electronic localization on the molecular units.
Furthermore, core level excitation measurements show the reduction of the lowest lying C 1s excitation feature, which clearly demonstrates that potassium intercalation leads to a filling of the conduction bands with electrons. Additionally, the measurements of potassium intercalated 1,2;8,9-dibenzopentacene clearly indicate the formation of particular doped phases with compositions K_xdibenzopentacene (x = 1, 2, 3), whereas the data suggest that K_1dibenzopentacene has an insulating ground state with an energy gap of about 0.9 eV, while K_2dibenzopentacene and K_3dibenzopentacene might well be metallic, because of the absent of an energy gap in the electronic excitation spectra.
Interestingly, a comparison of the photoemission as well as EELS spectra of undoped 1,2;8,9-dibenzopentacene and pentacene reveal that the electronic states close to the Fermi level and the electronic excitation spectra of the two materials are extremely similar, which is due to the fact, that the additional two benzene rings in 1,2;8,9-dibenzopentacene virtually do not contribute to the delocalized pi molecular orbitals close to the Fermi level. This close electronic similarity is in contrast to the behavior upon potassium doping, where evidence for a Mott state has been reported in the case of pentacene.
A comparison of the low energy excitation spectra of chrysene with picene (phenacenes) as well as tetracene with pentacene (acenes) crystals reveal a significant difference between the former and the latter two materials. While for the phenacenes (zigzag arrangement) the excitation onset is characterized by up to five weak excitation features with only small anisotropy and without visible Davydov splitting within the a*, b*-planes, the acene (linear arrangement) spectra are dominated by a large excitation close to the onset and a sizable Davydov splitting. The presented data show further that the spectral shape of the pentacene excitation spectrum provides clear evidence for a large admixture of molecular Frenkel-type excitons with charge-transfer excitations resulting in excited states with a significantly mixed character. This conclusion is in good agreement with recent advanced calculations which predicted a charge-transfer admixture to the lowest singlet excitation which is significantly dependent upon the length of the acene molecules. Moreover, also for picene and chrysene we observe differences which point towards an increased charge-transfer contribution to the singlet excitation spectrum in the former.
Finally, investigations of the electronic properties of undoped and potassium doped chrysene, a close relative of picene, show that the doping introduced changes are in a similar range such as observed in case of picene. Interestingly, due to the analogy between the observed changes in the electronic structure upon potassium doping between chrysene and picene and further similarity in the crystal structure we speculate that chrysene is a promising candidate for another aromatic hydrocabon superconductor.
|
10 |
Dynamic Electron-Phonon Interactions In One Dimensional ModelsHardikar, Rahul Padmakar 15 December 2007 (has links)
We study the unusual phases seen in charge transfer salts (CTS) at 1/2 and 1/4 filling. We use the Holstein-Hubbard model (HHM) and the Peierls extended Hubbard model (PEH) to study competing phases in CTS. In the 1/2illed HHM the Holstein coupling promotes a Peierls charge-density wave phase while the on-site Coulomb repulsion U gives rise to antiferromagnetic correlations and a Mott insulating state. Takada et al. have shown possibility of a third metallic phase between the Mott and the Peierls phase. We investigate the presence of an intermediate phase between the Mott and Peierls phase using Stochastic Series Expansion (SSE) method. We used charge and spin susceptibilities to determine the phase boundaries. As the coupling is increased a spin gap opens followed by the Peierls transition. The intermediate phase is metallic and has a spin gap but no charge gap. Transitions from the Mott to intermediate and intermediate to Peierls state are Kosterlitz-Thouless type (KT). As the coulomb repulsion is increaed beyond certain value the two KT transitions fuse to give a single first order transition. Similar behavior is seen at 1/4illed HHM. We also studied the temperature dependence of charge ordering (CO) in 1/4illed CTS. Most previous theoretical studies of the on CTS have concentrated on ground state or T=0 properties. Here we show the evolution of charge ordered (CO) state with temperature and directly related the experimental phase diagram with our theoretical results. Our calculations show that as temperature is lowered the Wigner crystal state gives way to spin-Peierls state with a different pattern of CO. Also we show that the critical value of nearest neighbor Coulomb repulsion is depends on the total spin and is different for different spin subspace.
|
Page generated in 0.0603 seconds