• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isotopic resolution of carbon monoxide and carbon dioxide by NIR diode laser spectroscopy

Lau, Steffen, Salffner, Katharina, Löhmannsröben, Hans-Gerd January 2006 (has links)
Near-infrared (NIR) absorption spectroscopy with tunable diode lasers allows the simultaneous detection of the three most important isotopologues of carbon dioxide (<SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O) and carbon monoxide (<SUP>12</SUP>CO, <SUP>13</SUP>CO, <SUP>12</SUP>C<SUP>18</SUP>O). The flexible and compact fiber-optic tunable diode laser absorption spectrometer (TDLAS) allows selective measurements of CO<SUB>2</SUB> and CO with high isotopic resolution without sample preparation since there is no interference with water vapour. For each species, linear calibration plots with a dynamic range of four orders of magnitude and detection limits (LOD) in the range of a few ppm were obtained utilizing wavelength modulation spectroscopy (WMS) with balanced detection in a Herriott-type multipass cell. The high performance of the apparatus is illustrated by fill-evacuation-refill cycles.
2

Isotope selective analysis of CO2 with tunable diode laser (TDL) spectroscopy in the NIR

Hörner, Gerald, Lau, Steffen, Kantor, Zoltan, Löhmannsröben, Hans-Gerd January 2004 (has links)
The performance of a home-built tunable diode laser (TDL) spectrometer, aimed at multi-line detection of carbon dioxide, has been evaluated and optimized. In the regime of the (30<SUP>0</SUP>1)<SUB>III</SUB> / (000) band of <SUP>12</SUP>CO<SUB>2</SUB> around 1.6 μm, the dominating isotope species <SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, and <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O were detected simultaneously without interference by water vapor. Detection limits in the range of few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. High sensitivity in conjunction with high precision —typically ±1‰ and ±6‰ for 3% and 0.7% of CO<SUB>2</SUB>, respectively— renders this experimental approach a promising analytical concept for isotope-ratio determination of carbon dioxide in soil and breath gas. For a moderate <SUP>12</SUP>CO<SUB>2</SUB> line, the pressure dependence of the line profile was characterized in detail, to account for pressure effects on sensitive measurements.
3

NIR-diode laser spectroscopy for isotope-selective sensing of soil-respired carbon dioxide

Hörner, Gerald, Lau, Steffen, Löhmannsröben, Hans-Gerd January 2004 (has links)
The performance of a home-built tunable diode laser (TDL) spectrometer has been optimized regarding multi-line detection of carbon dioxide in natural gases. In the regime of the (30<SUP>0</SUP>1)<SUB>III</SUB> ← (000) band of <SUP>12</SUP>CO<SUB>2</SUB> around 1.6 μm, the dominating isotope species <SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, and <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O were detected simultaneously. In contrast to most established techniques, selective measurements are performed without any sample preparation. This is possible since the CO<SUB>2</SUB> detection is free of interference from water, ubiquitous in natural gases. Detection limits in the range of a few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. Linear calibration plots cover a dynamic range of four orders of magnitude, allowing for quantitative CO<SUB>2</SUB> detection in various samples, like soil and breath gas. High isotopic resolution enables the excellent selectivity, sensitivity, and stability of the chosen analytical concept. The obtained isotopic resolution of typically ± 1.0 ‰ and ± 1.5 ‰ (for 3 vol. % and 0.7 vol. % of CO<SUB>2</SUB>, respectively) offers a promising analytical tool for isotope-ratio determination of carbon dioxide in soil gas. Preliminary experiments on soil respiration for the first time combine the on-line quantification of the overall carbon dioxide content with an optode sensor and isotopic determination (TDL system) of natural gas species.

Page generated in 0.0818 seconds