Spelling suggestions: "subject:"biodes"" "subject:"coiodes""
301 |
A solar PV-LED lighting system with bidirectional grid ballastingDeng, Wenpeng January 2015 (has links)
No description available.
|
302 |
Cause, effect and remedy of indium diffusion in Poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate)--based polymer light emitting device. / 以PEDOT:PSS為本的高份子發光器件中銦的擴散之研究 / Cause, effect and remedy of indium diffusion in Poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate)--based polymer light emitting device. / Yi PEDOT:PSS wei ben de gao fen zi fa guang qi jian zhong yin de kuo san zhi yan jiuJanuary 2003 (has links)
Yip Hin-lap = 以PEDOT:PSS為本的高份子發光器件中銦的擴散之研究 / 葉軒立. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 113). / Text in English; abstracts in English and Chinese. / Yip Hin-lap = Yi PEDOT:PSS wei ben de gao fen zi fa guang qi jian zhong yin de kuo san zhi yan jiu / Ye Xuanli. / Abstract --- p.ii / 論文摘要 --- p.iv / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Figures --- p.x / List of Tables --- p.xii / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Conjugated Polymer --- p.3 / Chapter 1.2.1 --- Electronic and Geometric Configuration --- p.3 / Chapter 1.2.2 --- Charge Carriers --- p.7 / Chapter 1.2.3 --- Concept of Doping --- p.9 / Chapter 1.2.4 --- Electrical Conductivity and Charge Transport Mechanisms --- p.15 / Chapter 1.3 --- "Poly(3,4-ethylenedioxythiophene) [PEDOT]" --- p.16 / Chapter 1.4 --- Polymer Light Emitting Diodes --- p.20 / Chapter 1.4.1 --- Device Fabrication --- p.21 / Chapter 1.4.2 --- Material Design and Properties --- p.23 / Chapter 1.4.3 --- Interface and surface of PLED --- p.25 / Chapter 1.5 --- """Chemistry"" and Diffusion at Interface" --- p.27 / Chapter 1.6 --- Surface/Interface Modification with Self-Assembled Monolayers --- p.30 / Chapter 1.7 --- Aims of This Thesis --- p.33 / References --- p.34 / Chapter CHAPTER 2 --- INSTRUMENTATION --- p.38 / Chapter 2.1 --- X-ray Photoelectron Spectroscopy --- p.38 / Chapter 2.1.1 --- Fundamental Theory of XPS --- p.39 / Chapter 2.1.2 --- Qualitative Analysis using XPS --- p.43 / Chapter 2.1.2.1 --- Chemical Shifts --- p.43 / Chapter 2.1.2.2 --- Shake-up satellites --- p.45 / Chapter 2.1.2.3 --- Valence band structure --- p.45 / Chapter 2.1.3 --- Quantitative Analysis Using XPS --- p.46 / Chapter 2.1.4 --- Depth Profiling --- p.47 / Chapter 2.1.4.1 --- Non-Destructive Method Using Angled-Resolved XPS --- p.47 / Chapter 2.1.4.2 --- Destructive Method Using Ion Sputtering --- p.49 / Chapter 2.1.5 --- Instrumental Setup of XPS --- p.49 / Chapter 2.2 --- PLED Fabrication and Characterization System --- p.51 / Chapter 2.3 --- Current-Voltage-Luminescence (I-V-L) Measurement --- p.53 / Chapter 2.4 --- Electrical Measurement --- p.54 / Chapter 2.5 --- Kelvin Probe Measurement --- p.55 / Chapter 2.6 --- pH Measurement --- p.56 / Chapter 2.7 --- Film Thickness Measurement --- p.56 / Chapter 2.8 --- Contact Angle Measurement --- p.57 / References --- p.60 / Chapter CHAPTER 3 --- STABILITY OF PEDOT:PSS/ITO INTERFACE --- p.61 / Chapter 3.1 --- Introduction --- p.61 / Chapter 3.2 --- Sample Preparation --- p.62 / Chapter 3.3 --- Results and Discussion --- p.63 / Chapter 3.3.1 --- XPS of Core levels in PEDOT:PSS --- p.63 / Chapter 3.3.1.1 --- XPS of S 2p Core Level --- p.64 / Chapter 3.3.1.2 --- XPS of O Is Core Level --- p.66 / Chapter 3.3.1.3 --- XPS of C Is Core Level --- p.68 / Chapter 3.3.2 --- Composition Analysis of PEDOT:PSS Films --- p.71 / References --- p.80 / Chapter CHAPTER 4 --- ELECTRICAL AND ELECTRONIC PROPERTIES OF PEDOT:PSS WITH DISSOLUTED INDIUM --- p.81 / Chapter 4.1 --- Introduction --- p.81 / Chapter 4.2 --- Sample Preparation --- p.81 / Chapter 4.2.1 --- Four-Point Probe Measurement --- p.82 / Chapter 4.2.2 --- Current-Voltage Measurement --- p.82 / Chapter 4.2.3 --- Work Function Measurement --- p.83 / Chapter 4.2.4 --- XPS Experiment --- p.83 / Chapter 4.3 --- Results and Discussion --- p.85 / Chapter 4.3.1 --- Electrical Properties of PEDOT:PSS --- p.86 / Chapter 4.3.2 --- Electronic Properties of PEDOT:PSS --- p.89 / References --- p.97 / Chapter CHAPTER 5 --- BLOCKING REACTIONS BETWEEN ITO AND PEDOT:PSS WITH A SELF-ASSEMBLY MONOLAYER --- p.98 / Chapter 5.1 --- Introduction --- p.98 / Chapter 5.2 --- Sample Preparation --- p.99 / Chapter 5.3 --- Result and Discussion --- p.103 / Chapter 5.3.1 --- In Diffusion Blocking Effect by SAM --- p.103 / Chapter 5.3.2 --- PLED Devices Performance --- p.107 / References --- p.113 / Chapter CHAPTER 6 --- CONCLUSION --- p.114 / Chapter CHAPTER 7 --- FURTHER WORKS --- p.116
|
303 |
Study of interfacial interactions in a novel polymer light emitting device. / 新的有機發光器件的界面研究 / Study of interfacial interactions in a novel polymer light emitting device. / Xin de you ji fa guang qi jian de jie mian yan jiuJanuary 2005 (has links)
Ho Ming Kei = 新的有機發光器件的界面研究 / 何銘基. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / Ho Ming Kei = Xin de you ji fa guang qi jian de jie mian yan jiu / He Mingji. / Abstract --- p.i / 论文摘要 --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Conjugated Polymers --- p.2 / Chapter 1.2.1 --- Electronic and geometric Configuration --- p.2 / Chapter 1.2.2 --- Charge Carries of conjugated polymers --- p.4 / Chapter 1.2.3 --- Polymer Light Emitting Diodes --- p.11 / Chapter 1.2.4 --- Device Fabrication --- p.12 / Chapter 1.2.5 --- Polymeric Luminescent Material Development --- p.18 / Chapter 1.2.6 --- Interface and Surface of PLED --- p.21 / Chapter 1.3 --- Aims of this thesis --- p.22 / References --- p.24 / Chapter Chapter 2 --- Instrumentation --- p.26 / Chapter 2.1 --- X-ray Photoelectron Spectroscopy --- p.26 / Chapter 2.1.1 --- Introduction --- p.26 / Chapter 2.1.2 --- Basic Principles and Theory --- p.28 / Chapter 2.1.3 --- Qualitative Analysis Using XPS --- p.29 / Chapter 2.1.4 --- Angular Effect on XPS --- p.29 / Chapter 2.1.5 --- Chemical Shifts --- p.30 / Chapter 2.1.6 --- Quantitative Analysis using XPS --- p.31 / Chapter 2.1.6.1 --- Survey spectrum --- p.32 / Chapter 2.1.6.2 --- Core level spectrum --- p.32 / Chapter 2.1.6.3 --- Valence band spectrum --- p.33 / Chapter 2.1.7 --- Instrumental Setup for XPS --- p.33 / Chapter 2.2 --- HV physical vapor deposition system with nitrogen glove box --- p.36 / Chapter 2.2.1 --- Nitrogen grove box --- p.38 / Chapter 2.2.2 --- HV physical vapor deposition system --- p.38 / Chapter 2.3 --- L-V-I measurement system --- p.41 / Chapter 2.3.1 --- Keithley 236 source-measure unit --- p.41 / Chapter 2.3.2 --- Photo Research PR-650 photo meter --- p.43 / Chapter 2.3.3 --- Test Environment Chamber --- p.43 / Chapter 2.4 --- a-Step Profilometer --- p.44 / References --- p.45 / Chapter Chapter 3 --- Interface study between MEHPPV: PEG and Aluminum --- p.46 / Chapter 3.1 --- Introduction --- p.46 / Chapter 3.2 --- Sample Preparations --- p.47 / Chapter 3.2.1 --- Si(lll) substrate preparation --- p.47 / Chapter 3.2.2 --- Au sputtering on the clean Si Surface --- p.48 / Chapter 3.2.3 --- Polymer film formation --- p.48 / Chapter 3.3 --- Results and Discussion --- p.49 / Chapter 3.3.1 --- XPS Survey scan ofMEHPPV --- p.51 / Chapter 3.3.2 --- XPS of Cls Core level ofMEHPPV --- p.51 / Chapter 3.3.3 --- XPS ofOls Core level ofMEHPPV --- p.55 / Chapter 3.3.4 --- XPS of A12p Core level ofMEHPPV --- p.59 / Chapter 3.3.5 --- XPS Survey scan of PEG --- p.64 / Chapter 3.3.6 --- XPS of Cls Core level of PEG --- p.64 / Chapter 3.3.7 --- XPS of Ols Core level of PEG --- p.67 / Chapter 3.3.8 --- XPS of A12p Core level of PEG --- p.70 / Chapter 3.3.9 --- XPS survey scan of MEHPPV:PEG(10wt% PEG) --- p.73 / Chapter 3.3.10 --- XPS Cls core level of MEHPPV:PEG(10wt% PEG) --- p.73 / Chapter 3.3.11 --- XPS Ols core level of MEHPPV:PEG(10wt% PEG) --- p.76 / Chapter 3.3.12 --- XPS A1 2p core level of MEHPPV: PEG --- p.80 / Chapter 3.3.13 --- Surface migration of bulk absorbed oxygen --- p.84 / Chapter 3.4 --- Conclusions --- p.84 / Reference --- p.87 / Chapter Chapter 4 --- Efficiency enhancement in polymer light emitting diodes using Crown ether 18-C6 and aluminum cathode --- p.89 / Chapter 4.1 --- Introduction --- p.89 / Chapter 4.2 --- Sample preparation --- p.91 / Chapter 4.2.1 --- The Cleaning of substrate --- p.91 / Chapter 4.2.2 --- PEDOT: PSS film formation --- p.93 / Chapter 4.2.3 --- Emissive polymer layer formation --- p.94 / Chapter 4.2.4 --- Deposition of metal cathode --- p.94 / Chapter 4.2.5 --- Epoxy Encapsulation --- p.95 / Chapter 4.3 --- Results and Discussion --- p.95 / References --- p.101 / Chapter Chapter 5 --- Concluding Remarks and Future Work --- p.102 / Chapter 5.1 --- Concluding Remarks --- p.102 / Chapter 5.2 --- Future Work --- p.103
|
304 |
Ultrashort optical pulses from laser diode and erbium doped fibers.January 1997 (has links)
Tong Yu Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / Abstract --- p.i / Acknowledgments --- p.ii / Table of Contents --- p.iii / Chapter (1) --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Overview of the Thesis --- p.2 / References --- p.4 / Chapter (2) --- Review of Ultrashort Pulse Generation and Pulsewidth Measurement --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Q-switching --- p.5 / Chapter 2.3 --- Gain-switching --- p.8 / Chapter 2.4 --- Mode-locking --- p.11 / Chapter 2.4.1 --- Active mode-locking --- p.12 / Chapter 2.4.2 --- Passive mode-locking --- p.13 / Chapter 2.5 --- Optical Pulse Compression --- p.15 / Chapter 2.6 --- Pulsewidth Detection Methods --- p.18 / Chapter 2.6.1 --- Streak camera --- p.18 / Chapter 2.6.2 --- Photodetector and sampling oscilloscope --- p.20 / Chapter 2.6.3 --- Nonlinear autocorrelator --- p.21 / Chapter 2.6.4 --- Other techniques --- p.24 / References --- p.25 / Chapter (3) --- Erbium Doped Fiber Amplifier and Active Mode-locking --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Erbium Doped Fiber Amplifier --- p.28 / Chapter 3.2.1 --- Background --- p.28 / Chapter 3.2.2 --- Experiment --- p.31 / Chapter 3.3 --- Additive Pulse Mode-locking --- p.35 / Chapter 3.4 --- Active Mode-locking --- p.37 / Chapter 3.4.1 --- Background --- p.37 / Chapter 3.4.2 --- Experiment and result --- p.38 / Chapter 3.4.3 --- Discussion --- p.43 / Chapter 3.5 --- Chapter Summary --- p.46 / References --- p.46 / Chapter (4) --- Passive Mode-locking of Erbium Doped Fiber Laser --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- Background --- p.49 / Chapter 4.3 --- Experimental Setup --- p.51 / Chapter 4.4 --- Initialing Mode-locking --- p.54 / Chapter 4.5 --- Experimental Result --- p.55 / Chapter 4.5.1 --- Real time pulse train --- p.55 / Chapter 4.5.2 --- Autocorrelation trace --- p.57 / Chapter 4.5.3 --- RF spectrum --- p.58 / Chapter 4.5.4 --- Optical spectrum --- p.59 / Chapter 4.5.5 --- Time-bandwidth product --- p.60 / Chapter 4.5.6 --- Output power --- p.61 / Chapter 4.6 --- Discussion --- p.63 / Chapter 4.6.1 --- Linear pulse broadening --- p.63 / Chapter 4.6.2 --- Cavity oscillation --- p.65 / Chapter 4.6.3 --- Pump power hysteresis --- p.66 / Chapter 4.6.4 --- Sideband generation --- p.67 / Chapter 4.6.5 --- Spectral distortion --- p.68 / Chapter 4.7 --- Chapter Summary --- p.71 / References --- p.72 / Chapter (5) --- Application of Ultrashort Optical Pulses from Figure Eight Laser --- p.74 / Chapter 5.1 --- Introduction --- p.74 / Chapter 5.2 --- Dispersion Measurement --- p.74 / Chapter 5.2.1 --- Introduction --- p.74 / Chapter 5.2.2 --- Background --- p.75 / Chapter 5.2.3 --- Experiment and result --- p.76 / Chapter 5.2.4 --- Discussion and conclusion --- p.80 / Chapter 5.3 --- Time Domain Spectral Estimation --- p.82 / Chapter 5.3.1 --- Introduction --- p.82 / Chapter 5.3.2 --- Background --- p.82 / Chapter 5.3.3 --- Experiment and result --- p.83 / Chapter 5.3.4 --- Discussion --- p.88 / Chapter 5.4 --- Ultrashort Pulse Amplification --- p.89 / Chapter 5.4.1 --- Introduction --- p.89 / Chapter 5.4.2 --- Background --- p.89 / Chapter 5.4.3 --- Experiment and result --- p.92 / Chapter 5.4.4 --- Discussion and conclusion --- p.95 / References --- p.96 / Chapter (6) --- Picosecond Pulse Generation from Semiconductor Laser Diodes --- p.99 / Chapter 6.1 --- Introduction --- p.99 / Chapter 6.2 --- Gain-switching --- p.99 / Chapter 6.2.1 --- Experiment using commercial laser diodes --- p.99 / Chapter 6.2.2 --- Repetition rate multiplication --- p.102 / Chapter 6.2.3 --- Pulse compression with HDSF --- p.107 / Chapter 6.2.4 --- Fiber loop compressor --- p.110 / Chapter 6.3 --- Active or Hybrid Mode-locking --- p.112 / Chapter 6.3.1 --- Introduction --- p.112 / Chapter 6.3.2 --- Laser structure --- p.113 / Chapter 6.3.3 --- Experiment and result --- p.113 / Chapter 6.3.4 --- Discussion and conclusion --- p.116 / Chapter 6.4 --- Amplifier Modulation --- p.117 / Chapter 6.4.1 --- Introduction --- p.117 / Chapter 6.4.2 --- Experiment and result --- p.118 / Chapter 6.5 --- Wavelength Tuning --- p.120 / Chapter 6.5.1 --- Introduction --- p.120 / Chapter 6.5.2 --- Experiment and result --- p.121 / Chapter 6.5.3 --- Conclusion --- p.123 / Chapter 6.6 --- Chapter Summary --- p.124 / References --- p.124 / Chapter (7) --- Conclusion --- p.126 / Chapter 7.1 --- Summary of the Research --- p.126 / Chapter 7.1.1 --- Fiber lasers --- p.126 / Chapter 7.1.2 --- Diode lasers --- p.128 / Chapter 7.2 --- Further Study --- p.129 / Appendix I Project Instrumentation --- p.A-l / Appendix II Curve Fitting Program for the SHG Autocorrelation Trace --- p.A-8 / Appendix III Experiment Setup of Figure Eight Laser --- p.A-12 / "Appendix IV Curve Fitting Program for Determination of Second Order Dispersion, dD/dλ" --- p.A-14 / Appendix V 1.3 μm two sections DFB/TA Laser Diode Chips --- p.A-17 / Appendix VI Publication List --- p.A-l9
|
305 |
New luminescent organometallic complexes of platinum (II), iridium (III), copper (I) and gold (III) and their optoelectronic applicationsXie, Zheng 01 January 2013 (has links)
No description available.
|
306 |
Conjugated metal-organic phosphorescent materials and polymers containing fluorene and carbazole unitsHo, Cheuk Lam 01 January 2007 (has links)
No description available.
|
307 |
Estudo comparativo das respostas de diodos de Si para dosimetria de radiação gama / Comparative study of Si diodes response for gamma radiation dosimetryKelly Cristina da Silva Pascoalino 07 April 2010 (has links)
Neste trabalho é apresentado um estudo comparativo da resposta de diodos de Si para dosimetria de radiação gama. Os diodos investigados, crescidos pelas técnicas de fusão zonal (Fz) e Czchocralski magnético (MCz), foram processados no Instituto de Física da Universidade de Helsinki no âmbito das pesquisas e desenvolvimento de dispositivos de Si resistentes a danos de radiação segundo a colaboração RD50 do CERN (European Organization for Nuclear Research). Para estudar a resposta dosimétrica dos diodos, eles foram acoplados diretamente no modo fotovoltaico na entrada de um eletrômetro digital para medir o sinal de fotocorrente devido a incidência de raios gama provenientes de uma fonte de 60Co (Gammacell 220). O parâmetro dosimétrico usado para estudar a resposta destes dispositivos foi a carga, obtida pela integração do sinal de corrente pelo tempo de exposição, em função da dose absorvida. Estudos da influência dos procedimentos de pré-irradiação na sensibilidade e estabilidade destes diodos mostraram que a sensibilidade decresce com a dose total absorvida mas depois de uma pré-irradiação de cerca de 873 kGy, eles se tornaram mais estáveis. Efeitos dos danos de radiação eventualmente produzidos nos diodos foram monitorados mediante medidas dinâmicas de corrente e de capacitância depois de cada etapa de irradiação. Ambas as amostras exibiram boa reprodutibilidade de resposta, 2,21% (Fz) e 2,94% (MCz), obtida com 13 medidas consecutivas de 15 kGy comparadas com a equivalente dose de 195 kGy absorvida em uma única etapa de irradiação. É importante notar que estes resultados são melhores do que aqueles obtidos com dosímetros de rotina de polimetilmetacrilato (PMMA) usados em processamento por radiação. / In this work it is presented the comparative study of Si diodes response for gamma radiation dosimetry. The diodes investigated, grown by float zone (Fz) and magnetic Czchcralski (MCz) techniques, were processed at the Physics Institute of Helsinki University in the framework of the research and development of rad-hard silicon devices. To study the dosimetric response of these diodes they were connected in the photovoltaic mode to the input of a digital electrometer to measure the photocurrent signal due to the incidence of gamma-rays from a 60Co source (Gammacell 220). The dosimetric parameter utilized to study the response of these devices was the charge, obtained trough the integration of the current signals, as a function of the absorbed dose. Studies of the influence of the pre-irradiation procedures on both sensivity and stability of these diodes showed that the sensitivity decreased with the total absorbed dose but after a preirradiation of about 873 kGy they became more stable. Radiation damage effects eventually produced in the devices were monitored trough dynamic current and capacitance measurements after each irradiation step. Both samples also exhibited good response reproducibility, 2,21% (Fz) and 2,94% (MCz), obtained with 13 consecutive measurements of 15 kGy compared with the equivalent 195 kGy absorbed dose in one step of irradiation. It is important to note that these results are better than those obtained with routine polimetylmetacrilate (PMMA) dosimeters used in radiation processing dosimetry .
|
308 |
Perovskite light-emitting diodes with tunable emissionLai, May Ling January 2018 (has links)
Solid-state lightings are becoming the popular choice for lightings due to its higher efficiency, improved colour rendering index and the flexibility of various size and shape. Halide perovskite has tunable colour emission, low disorder and is solution processable making it one of a popular choice as emitters. This thesis demonstrates the versatility of using halide perovskite material in light-emitting diodes. We demonstrate the first working perovskite light-emitting diode at room temperature by introducing thin layer of perovskite emitter which is crucial to confine the inherent free carriers in the material. We show that the 3D lead-halide bulk perovskite is bandgap tunable with emission in the green and red visible spectrum. Light-emitting diodes in the visible spectrum are common however near-infrared emission is a rarity. Lead is a heavy metal which is known for its toxicity. We tackled the issue of toxicity by replacing with tin and demonstrate tunable emission in the near-infrared region. Bulk perovskites have large binding energy which makes it difficult to confine the charges and form radiative recombination which is crucial for emission and efficiency of the device. We move into lower dimensionality perovskites by utilising all-inorganic perovskite nanoplatelets and show emission in the blue region.
|
309 |
Implementation of optical feedback interferometry for sensing applications in fluidic systemsRamírez-Miquet, Evelio Esteban 29 September 2016 (has links) (PDF)
Optical feedback interferometry is a sensing technique with relative recent implementation for the interrogation of fluidic systems. The sensing principle is based on the perturbation of the laser emission parameters induced by the reinjection in the laser cavity of light back-scattered from a distant target. The technique allows for the development of compact and noninvasive sensors that measure various parameters related to the motion of moving targets. In particular, optical feedback interferometers take advantage of the Doppler effect to measure the velocity of tracers in flowing liquids. These important features of the optical feedback interferometry technique make it wellsuited for a variety of applications in chemical engineering and biomedical fields, where accurate monitoring of the flows is needed. This thesis presents the implementation of optical feedback interferometry based sensors in multiple fluidic systems where local velocity or flow rate are directly measured. We present an application-centered study of the optical feedback sensing technique used for flow measurement at the microscale with focus on the reliability of the signal processing methods for flows in the single and the multiple scattering regimes. Further, we present experimental results of ex vivo measurements where the optical feedback sensor is proposed as an alternative system for myography. In addition we present a real-time implementation for the assessment of non-steady flows in a millifluidic configuration. A semi-automatized system for single particle detection in a microchannel is proposed and demonstrated. Finally, an optical feedback based laser sensor is implemented for the characterization of the interactions between two immiscible liquid-liquid flowing at the microscale, and the measurement is compared to a theoretical model developed to describe the hydrodynamics of both fluids in a chemical microreactor. The present manuscript describes an important contribution to the implementation of optical feedback sensors for fluidic and microfluidic applications. It also presents remarkable experimental results that open new horizons to the optical feedback interferometry.
|
310 |
A study of electrical properties of metal/organic semiconductor/metal diodes.January 2009 (has links)
Wu, Chin Kong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 122-131). / Abstract also in Chinese. / ABSTRACT (English) --- p.i / ABSTRACT (Chinese) --- p.iii / ACKNOWLEDGMENTS --- p.v / TABLE OF CONTENTS --- p.vi / Chapter CHAPTER 1 --- Introduction --- p.1 / Chapter 1.1 --- Organic light-emitting- diode (OLED) --- p.2 / Chapter 1.2 --- Organic photovoltaics --- p.5 / Chapter 1.3 --- Organic field-effect transistor --- p.10 / Chapter CHAPTER 2 --- Properties of organic semiconductor --- p.17 / Chapter 2.1 --- Organic semiconductors --- p.17 / Chapter 2.2 --- Electronic structure of organic semiconductors --- p.18 / Chapter 2.3 --- Disorder and traps in organic semiconductors --- p.19 / Chapter 2.4 --- Charge carriers transport in organic semiconductors --- p.20 / Chapter 2.4.1 --- Polaron model --- p.21 / Chapter 2.4.2 --- Scher-Montroll model --- p.21 / Chapter 2.4.3 --- Gaussian disorder model --- p.23 / Chapter 2.5 --- Metal/organic interfaces --- p.25 / Chapter CHAPTER 3 --- Experimental details --- p.28 / Chapter 3.1 --- Sample preparation --- p.28 / Chapter 3.1.1 --- Organic semiconductors used in this thesis --- p.28 / Chapter 3.1.2 --- Cleaning of substrate --- p.29 / Chapter 3.1.3 --- Deposition of organic layer --- p.29 / Chapter 3.1.4 --- Deposition of metal --- p.31 / Chapter 3.2 --- Electrical characterization methods --- p.32 / Chapter 3.2.1 --- Current density 一 voltage (J-V) measurement --- p.32 / Chapter 3.2.2 --- Dark Injection Space-Charge-Limited (DI-SCL) transient current measurement --- p.38 / Chapter 3.2.3 --- Temperature varied J-V measurement --- p.43 / Chapter 3.2.4 --- Admittance spectroscopy --- p.44 / Chapter CHAPTER 4 --- Charge transport properties in single-organic-layer devices --- p.51 / Chapter 4.1 --- Experimental scheme --- p.51 / Chapter 4.2 --- Experimental results and discussion --- p.53 / Chapter 4.2.1 --- J-V measurements --- p.53 / Chapter 4.2.1.1 --- MTDATA --- p.53 / Chapter 4.2.1.2 --- NPB --- p.59 / Chapter 4.2.2 --- DI-SCL transient current measurement --- p.64 / Chapter 4.2.3 --- Admittance spectroscopy --- p.68 / Chapter 4.2.3.1 --- MTDATA --- p.68 / Chapter 4.2.3.2 --- NPB --- p.75 / Chapter 4.3 --- Conclusion --- p.79 / Chapter CHAPTER 5 --- Charge transport properties in double-organic-layer devices with organic-organic heterojunction --- p.81 / Chapter 5.1 --- Introduction --- p.81 / Chapter 5.2 --- Experimental scheme --- p.82 / Chapter 5.3 --- Experimental results and discussion --- p.84 / Chapter 5.3.1 --- ITO/MTDATA/NPB/A1 device --- p.84 / Chapter 5.3.2 --- ITO/MTDATA/Alq3/LiF/Al device --- p.105 / Chapter 5.4 --- Conclusion --- p.115 / Chapter CHAPTER 6 --- Conclusions and future work --- p.101 / Chapter 6.1 --- Conclusions --- p.118 / Chapter 6.2 --- Future work --- p.120 / REFERENCES --- p.122
|
Page generated in 0.0325 seconds