• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NFDNA - um algoritmo para otimização não convexa e não diferenciável

Fernandes, Camila de Freitas 08 April 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-16T17:52:10Z No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T14:25:13Z (GMT) No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) / Made available in DSpace on 2016-07-13T14:25:13Z (GMT). No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) Previous issue date: 2016-04-08 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudamos um algoritmo para solução de problemas de otimização irrestrita com funções não necessariamente convexas ou diferenciáveis, denominado Nonsmooth Feasible Direction Nonconvex Algorithm - NFDNA, e fazemos uma aplicação deste algoritmo que consistiu em utilizá-lo como subrotina de um outro algoritmo chamado Interior Epigraph Direction (IED) method. O IED, desenvolvido para resolver problemas de otimização não convexa, não diferenciável mas com restrições, utiliza Dualidade Lagrangeana que requer a minimização da função Lagrangeana. A eficiência do IED depende fortemente de tal minimização. Como aplicação, substituímos a rotina fminsearch do Matlab, utilizada originalmente pelo IED, pelo NFDNA. Mostramos através da solução de problemas teste que a performance do IED foi mais eficiente com a utilização do NFDNA. / In this work we study an algorithm for solving unsconstrained, not necessarily convex or differentiable optimization problems called Nonsmooth Feasible Direction Nonconvex Algorithm - NFDNA. We also employ this algorithm as a subroutine of the Interior Epigraph Directions (IED) method. The IED method, devised for solving constrained, nonconvex and nonsmooth optimization problems uses Lagrangean Duality which requires the minimization of the Lagrangean function. The effectiveness of the IED depends strongly on the Lagrangean function minimization. As an application, we replace the Matlab routine fminsearch, originally used by IED, with NFDNA. We show through the solution of test problems that the IED performance is more efficient by employing NFDNA.

Page generated in 0.0502 seconds