• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural optimisation of artificial neural networks by the genetic algorithm using a new encoding scheme

Kothari, Bhavin Chandrakant January 1997 (has links)
No description available.
2

A Computational Study of the Role of Genetic Reuse in Evolvability

Seys, Chad William 27 August 2012 (has links)
No description available.
3

Developmental Encodings in Neuroevolution - No Free Lunch but a Peak at the Menu is Allowed

Kiran Manthri, Bala, Sai Tanneeru, Kiran January 2021 (has links)
NeuroEvolution besides deep learning is considered the most promising method to train and optimize neural networks. Neuroevolution uses genetic algorithms to train the controller of an agent performing various tasks. Traditionally, the controller of an agent will be encoded in a genome which will be directly translated into the neural network of the controller. All weights and the connections will be described by their elements in the genome of the agent. Direct Encoding – states if there is a single change in the genome it directly affects a change in the brain. Over time, different forms of encoding have been developed, such as Indirect and Developmental Encodings. This paper mainly concentrates on Developmental Encoding and how it could improve NeuroEvolution. The No-Free Lunch theorem states that there is no specific optimization method that would outperform any other. This does not mean that the genetic encodings could not outperform other methods on specific neuroevolutionary tasks. However, we do not know what tasks this might be. Thus here a range of different tasks is tested using different encodings. The hope is to find in which task domains developmental encodings perform best.
4

Koevoluce kartézských genetických algoritmů a neuronových sítí / Coevolution of Cartesian Genetic Algorithms and Neural Networks

Kolář, Adam January 2014 (has links)
The aim of the thesis is to verify synergy of genetic programming and neural networks. Solution is provided by set of experiments with implemented library built upon benchmark tasks. I've done experiments with directly and also indirectly encoded neural netwrok. I focused on finding robust solutions and the best calculation of configurations, overfitting detection and advanced stimulations of solution with fitness function. Generally better solutions were found using lower values of parameters n_c and n_r. These solutions tended less to be overfitted. I was able to evolve neurocontroller eliminating oscilations in pole balancing problem. In cancer detection problem, precision of provided solution was over 98%, which overcame compared techniques. I succeeded also in designing of maze model, where agent was able to perform multistep tasks.

Page generated in 0.0728 seconds