• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DIRECT ELECTRON-BEAM PATTERNING OF TEFLON-AF AND ITS APPLICATION TO OPTICAL WAVEGUIDING

Karre, Vijayasree 01 January 2009 (has links)
Thin films of Teflon AF have been directly patterned by electron-beam lithography without the need for post exposure chemical development. The relationship between pattern depth and exposure dose was found to be linear over a wide range of doses. Pattern depth was also observed to be dependent on initial film thickness. Teflon AF can be directly patterned at doses similar to typical e-beam resists. High resolution features as small as ~200 nm have been resolved. FTIR measurements revealed that CF3 and fluorinated dioxole groups play a significant role in the patterning mechanism. Teflon AF films also exhibited an increase in refractive index upon exposure to the electron-beam. This property has been exploited in waveguiding applications. Waveguides in Teflon AF were patterned using direct electron beam lithography technique. Waveguides were clearly visible to the naked eye. Characterization in the visible region showed evidences of light guiding through the waveguides. However light could not cross the entire chip. Characterization in the infrared region revealed the slab mode even though individual waveguides were not detected.
2

Direct Patterning of Optical Coupling Devices in Polymer Waveguides

Finn, Andreas 26 May 2014 (has links) (PDF)
The aim of the present work was to design and fabricate all purpose, positioning-tolerant and efficient interconnects between single-mode fibers and integrated waveguides out of polymers. The developed structures are part of the optical packaging of integrated optical chips. Integrated optics have gathered tremendous interest throughout recent years from research as well as from the industry, and most likely the demand will further grow in the future. Today’s trend is to establish optical data communication not only in far-distance transmission but also in end-user or so called fiber-to-home configurations, or, in the near future, also on board or even chip level. In addition, integrated optical sensors are gaining more and more importance. In the future, lab-on-a-chip systems may be able to simplify and accelerate analysis methods within health care or allow for a continuous monitoring of almost any environmental variable. All these applications call for robust optical packaging solutions. Many integrated optical chips are using a silicon-on-insulator design. Technologies which were originally intended for the manufacturing of integrated circuits can be utilized for the fabrication of such silicon-on-insulator chips. Point-of-care testing, which is a considerable part of bio-sensing, in some cases only allows the use of disposable transducer elements. The fabrication of these transducers, also including almost all other system parts, may be possible using polymers. Alternative fabrication methods like nanoimprint lithography can be applied for the patterning of polymers. With these, the extension of already known working principles or even entirely new device architectures become feasible for mass production. The direct patterning of polymers by means of nanoimprint was used to fabricate interconnects for integrated waveguides. In contrast to conventional lithography approaches, where a patterned resist layer is used as a masking layer for subsequent process steps, direct patterning allows the immediate use of the structures as functional elements. Firstly, nanoimprint allows diffraction-unlimited patterning with nanometer resolutions as well as the replication of complex three-dimensional patterns. These unique properties were used within this work to pattern shallow gratings atop an integrated waveguide within only one single manufacturing step. The gratings are used as coupling elements and can be utilized either to couple light from external elements to the chip or vice versa. Considerations regarding the optical effects on single-mode polymer waveguides as well as grating couplers were obtained from simulation. They are specific to the chosen design and the used polymer and cannot be found elsewhere so far. Compared to similar designs and fabrication strategies proposed in literature, the ones followed here allow for a higher efficiency. The dimensions and process windows obtained from simulation did serve as a basis for the subsequent fabrication of the grating couplers. All steps which are necessary to turn the calculated design into reality, ranging from master fabrication, to working mold cast and imprint, are shown in detail. The use of a working mold strategy is of crucial importance for the fabrication process and is discussed in detail. The use of a working mold preserves a costly master and further allows for a cost-efficient production. Parameters which are relevant for the production as well as for the final polymer patterns were analyzed and discussed. On the basis of the obtained data, a process optimization was performed. The optical characterization was also part of the presented work. A comparison with the results obtained from simulation is included and additional effects were revealed. Most of them may be subject to further improvement in future designs. In summary, the present work contributes to the field of optical packaging. It shows a viable route for the design and fabrication of interconnects of single-mode polymer waveguides. The presented design can be used as a building block which can be placed at almost any positions within an integrated optical chip. The fabrication method includes a minimum number of process steps and is still able to increase performance compared to similar approaches. Moreover, all process steps allow for scaling and are potential candidates for mass production.
3

ZnO micro- and nanostructures from Deep-UV photosensitive solutions for electronic and magnetic applications / Micro et nanostructures ZnO préparées par photolithographie UV profond pour des applications électroniques et magnétiques

Yeh, Chun-Cheng 07 November 2017 (has links)
Ce travail a consisté à mettre au point et étudier des formulations à base d’un précurseur photosensible de Zn (Zinc méthacrylate, ZnMAA). Déposé sous forme de film mince, ce précurseur peut être réticulé par une irradiation dans l’UV profond (193 nm). Il est montré que la réticulation est la conséquence d’une décomposition photoinduite partielle des précurseurs, qui provoque des réactions de condensations, conduisant à la formation du réseau Zn-O-Zn. Cette réaction a été caractérisée par spectroscopie FTIR, XPS et ellipsométrie (chapitre III). Il est montré qu’elle est partielle mais efficace pour conférer au matériau un caractère de résine à tonalité négative, pouvant être utilisée en écriture laser directe. Des structures submicrométriques ont été préparées avec cette résine. Les différentes étapes du procédé de photolithographie sont discutées dans le chapitre IV. En particulier, l’étape de recuit thermique pour obtenir un matériau ZnO est étudiée pour expliquer son impact sur la géométrie des structures obtenues. Le matériau ZnO structuré par cette voie est utilisé enfin pour fabriquer des dispositifs : transistor, capteur de gaz, réseau à propriétés magnétiques, prouvant l’intérêt de cette approche de microstructuration basée sur un matériau préparé par voie liquide. / In this thesis, an in-depth investigation to the photosensitive zinc methacrylate (ZnMAA) precursor was made. Zinc methacrylate can be crosslinked under DUV (193 nm) irradiation. The photo-induced solidification is attributed to the partial decomposition of the ZnMAA complex, which gives rise to the following hydrolysis-condensation reactions and the formation of Zn-O-Zn networks. The bonding variation and decomposition of organic species caused by DUV irradiation were carefully investigated by FTIR, XPS and ellipsometry and discussed in Chapter III. DUV irradiation provokes clivage of MAA ligands from zinc cations. However, the intensity of MAA ligands can only be reduced to ~2/3 of its initial intensity regardless the extension of irradiation time, implying only a small amount oxide network can be induced by DUV irradiation. The small amount of Zn-O-Zn networks inside the photo-irradiated regions can effectively decrease the solubility of photo-irradiated regions in polar solvents, which makes ZnMAA precursor just like a negative tone resist and able to be patterned into two-dimensional structures by DUV lithography. Due to good photosensitivity to DUV light (193 nm), the dimension of DUV-patterned ZnMAA structures can be decreased to sub-micro by using binary masks and the effects of each pattering step including (i) DUV exposure, (ii) prebaking and (iii) development on the size and shape of DUV-patterned ZnMAA structures are discussed in Chapter IV. In order to fabricate nanoscale ZnMAA structures, a home-made DUV interference system was used to pattern ZnMAA precursor and 300 nm periodic lines were successfully made. Applications as TFT transistor, gaz sensor and magnetic materials are shown.
4

Direct Patterning of Optical Coupling Devices in Polymer Waveguides

Finn, Andreas 25 April 2014 (has links)
The aim of the present work was to design and fabricate all purpose, positioning-tolerant and efficient interconnects between single-mode fibers and integrated waveguides out of polymers. The developed structures are part of the optical packaging of integrated optical chips. Integrated optics have gathered tremendous interest throughout recent years from research as well as from the industry, and most likely the demand will further grow in the future. Today’s trend is to establish optical data communication not only in far-distance transmission but also in end-user or so called fiber-to-home configurations, or, in the near future, also on board or even chip level. In addition, integrated optical sensors are gaining more and more importance. In the future, lab-on-a-chip systems may be able to simplify and accelerate analysis methods within health care or allow for a continuous monitoring of almost any environmental variable. All these applications call for robust optical packaging solutions. Many integrated optical chips are using a silicon-on-insulator design. Technologies which were originally intended for the manufacturing of integrated circuits can be utilized for the fabrication of such silicon-on-insulator chips. Point-of-care testing, which is a considerable part of bio-sensing, in some cases only allows the use of disposable transducer elements. The fabrication of these transducers, also including almost all other system parts, may be possible using polymers. Alternative fabrication methods like nanoimprint lithography can be applied for the patterning of polymers. With these, the extension of already known working principles or even entirely new device architectures become feasible for mass production. The direct patterning of polymers by means of nanoimprint was used to fabricate interconnects for integrated waveguides. In contrast to conventional lithography approaches, where a patterned resist layer is used as a masking layer for subsequent process steps, direct patterning allows the immediate use of the structures as functional elements. Firstly, nanoimprint allows diffraction-unlimited patterning with nanometer resolutions as well as the replication of complex three-dimensional patterns. These unique properties were used within this work to pattern shallow gratings atop an integrated waveguide within only one single manufacturing step. The gratings are used as coupling elements and can be utilized either to couple light from external elements to the chip or vice versa. Considerations regarding the optical effects on single-mode polymer waveguides as well as grating couplers were obtained from simulation. They are specific to the chosen design and the used polymer and cannot be found elsewhere so far. Compared to similar designs and fabrication strategies proposed in literature, the ones followed here allow for a higher efficiency. The dimensions and process windows obtained from simulation did serve as a basis for the subsequent fabrication of the grating couplers. All steps which are necessary to turn the calculated design into reality, ranging from master fabrication, to working mold cast and imprint, are shown in detail. The use of a working mold strategy is of crucial importance for the fabrication process and is discussed in detail. The use of a working mold preserves a costly master and further allows for a cost-efficient production. Parameters which are relevant for the production as well as for the final polymer patterns were analyzed and discussed. On the basis of the obtained data, a process optimization was performed. The optical characterization was also part of the presented work. A comparison with the results obtained from simulation is included and additional effects were revealed. Most of them may be subject to further improvement in future designs. In summary, the present work contributes to the field of optical packaging. It shows a viable route for the design and fabrication of interconnects of single-mode polymer waveguides. The presented design can be used as a building block which can be placed at almost any positions within an integrated optical chip. The fabrication method includes a minimum number of process steps and is still able to increase performance compared to similar approaches. Moreover, all process steps allow for scaling and are potential candidates for mass production.
5

Analysis of polymeric singlemode waveguides for inter-system communication

Weyers, David, Nieweglowski, Krzysztof, Lorenz, Lukas, Bock, Karlheinz 28 March 2022 (has links)
This paper describes simulation, technology- and process development for the manufacturing of single mode polymeric waveguides by photolithography. Simulations for single mode operation in O- and C-band are carried out. Waveguides are directly patterned with UV-photolithography using Ormocere®-material. Fiber to waveguide coupling and near field are characterized.
6

Hybrid lithography approach for single mode polymeric waveguides and out-of-plane coupling mirrors

Weyers, David, Mistry, Akash, Nieweglowski, Krzysztof, Bock, Karlheinz 14 November 2023 (has links)
This paper describes technology and process development for a hybrid lithography approach pairing UV-lithography for planar single mode waveguides with 2-photon-polymerization direct-laser-writing for out-of-plane coupling mirrors. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography are presented. Near square core cross sections are achieved. Minimum alignment accuracy at ≈ 3 μm is observed. Cut-back measurement on single mode waveguides shows attenuation of 0.64 dB cm −1 and 1.5 dB cm −1 at 1310 nm and 1550 nm respectively. Up to 2.5-times increase of shear-strength after thermal exposure up to 300 ◦ C is found using shear tests and compared for various surface treatments. Mechanical compatibility to reflow soldering is derived. An extensive study on the pattering of ORMOCER® using 2-photon-polymerization is performed. Flat 45 ◦ -micro mirrors with sub-10 μm dimensions are 3D-printed both in OrmoCore and OrmoComp. Outlook to further research on hybrid lithography integration approach is given.
7

Advances in UV-lithographic patterning of multi-layer waveguide stack for single mode polymeric RDL

Weyers, David, Nieweglowski, Krzysztof, Bock, Karlheinz 14 November 2023 (has links)
This paper describes design and advances in process development for UV-lithography of planar single mode waveguides with openings for out-of-plane coupling µ-mirrors. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography are presented. Near square core cross sections are achieved. However, non uniformity across 4” wafer is shown due to varying proximity and UV-intensity. Openings in full stack with steep sidewalls without residual layer are patterned. Reduction in stack thickness for very small exposure doses due to inhibition even under inert atmosphere is shown. 45° -µ-mirrors are integrated in these openings to manufacture a U-link via a single mode waveguide and two adjacent micro-mirrors. Optical characterization of U-link demonstrates the feasibility of hybrid lithography approach. However, non-uniformity of core cross-section leads to cross coupling of planar waveguides. Outlook to further research on UV-lithography of multi-layer waveguide stack and alignment with µ-mirror printing is given.
8

Hybrid lithography fabrication of single mode optics for signal redistribution and coupling

Weyers, David, Nieweglowski, Krzysztof, Bock, Karlheinz 10 May 2024 (has links)
This paper describes advances in hybrid-lithography process, combining UV-lithography for planar, single mode redistribution layer (RDL) and 2-photon-polymerization direct-laser-writing (2PP-DLW) for micro-mirrors inside RDL-opening. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography and need for broadband UV-LED source are presented. Near square core cross sections and smooth sidewalls are achieved. Openings in full stack with steep sidewalls without residual layer are patterned. To optimize 2PP-DLW-process processing window for both OrmoComp and IP-DIP is thoroughly characterized. Roughness measurements prove feasibility even of coarsely printed structure as reflective μ-mirror for 1550 nm wavelength. Finally these results are applied to periscope probe for wafer-level-testing of edge emitting lasers and proof of concept is shown. Outlook to further research on UV-lithography of multi-layer waveguide stack and alignment with μ-mirror printing is given.

Page generated in 0.2608 seconds