• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Topology-guided analysis and visualization of charge density fields

Jakobsson, Elvis January 2019 (has links)
Direct volume rendering techniques for scalar fields make use of transfer functions to map optical properties to the field; the field can subsequently be visualized through the drawing of isosurfaces in the volume spanned by the field. The utility of this approach is limited in the case of nested or clustered structures with the same isovalue and further does not easily allow for quantitative measurements of the visualized data. This report explores the use of topological structures (contour trees and Morse-Smale complexes) as an augmentation of traditional direct volume rendering and describes a fully functional implementation in the visualization software Inviwo. The implementation is evaluated through analysis of valency charge density fields in cubic MgO2 and FeO2. It is demonstrated that both contour trees and Morse-Smale complexes provide information and segmentation of initial volume data that allows for selective transfer function application (based on the segmentation), on-demand information on critical points and an overview of the scalar field through a topological representation embedded in the visualized volume. Analysis of the provided charge density fields show that contour trees generate physically irrelevant artefacts and thus are ill-suited for analysing highly symmetric data. On the other hand, the Morse-Smale complex approach is used to extract information of the bond strength of O-O contacts in MgO2 and FeO2 consistent with previous findings, as well as information on electronic charge configuration consistent with previous findings on MgO2. In the case of FeO2, the electronic configuration results are not consistent. This is speculated to be due to a combination of factors, most notably the lack of periodic boundary conditions in the implementation and the more complicated structure of FeO2.   In light of the partially accurate data analysis, as well as the added functionality and utility provided to visualization software, this approach to topology-guided visualization is considered promising and worthy of further study and/or development.
12

"Rendering híbrido: mapeamento de volumes sobre superfícies" / Hybrid rendering: mapping volume on surfaces

Eler, Danilo Medeiros 27 April 2006 (has links)
Algoritmos para rendering de superfícies são rápidos, mas não são compatíveis com situações em que é necessário investigar estruturas internas em volumes. Algoritmos de rendering volumétrico direto são adequados para a exploração de estruturas volumétricas, mas são lentos quando comparados a um rendering de superfícies. Várias soluções híbridas foram propostas na literatura, sendo que uma delas, conhecida como VoS (Volume on Surface), foi proposta recentemente com o objetivo de aumentar a capacidade de investigação do conteúdo de volumes por meio de superfícies. VoS é uma técnica híbrida que permite mapear o conteúdo de um volume em superfícies extraídas do mesmo. A técnica executa lançamento de raios para mapear as informações do volume na superfície, possibilitando a visualização das estruturas internas do volume utilizando rendering de superfícies convencional. No presente trabalho estudamos a técnica VoS e propomos diversas modificações com o intuito de generalizar a técnica e tratar algumas de suas limitações. As novas soluções apresentadas permitem a utilização da técnica com volumes de voxels regulares, e geram imagens de melhor qualidade. Assim como a VoS, as duas novas versões implementadas, VoSm e VoSm*, têm o objetivo de melhorar o poder de investigação do rendering de superfícies, permitindo a exploração do conteúdo de volumes. A técnica VoS e suas variações oferecem uma ferramenta alternativa para aplicações em que a utilização de superfícies é uma solução natural. / Surface rendering algorithms are fast, but are not suitable in situations where internal volume structures must be displayed for investigation. On the other hand, Direct Volume Rendering algorithms are effective to support exploration of internal volume structures, but software implementations are slow as compared to surface rendering solutions. Several hybrid solutions have been proposed in the literature. One of such hybrid solutions, named as VoS (Volume on Surface), has been recently introduced with the goal of using surfaces to enhance volume investigation capability. VoS is a hybrid technique that maps volume contents to surfaces extracted from this volume. The technique performs ray casting to map the volume information onto the surface, thus enabling the visualization of internal volume structures using standard surface rendering algorithms. In this work we study the VoS technique and propose several modifications in order to generalize the technique and treat some of its limitations. The new solutions presented here enable applying the technique to volumes described as a regular grid of voxels and produce images of superior quality as compared to the original. As with VoS, the two novel implementations, VoSm and VoSm*, have the goal of improving the investigative power of a surface rendering display, supporting exploration of volumetric contents. VoS and its variations are alternative tools for applications where surface rendering is a natural visualization solution.
13

Virtual Cadaver Navigation System: Using Virtual Reality For Learning Human Anatomy

Lothe, Abhijit V 09 June 2005 (has links)
The use of virtual reality (VR) for visualization can revolutionize medical training by simulating real world medical training procedures through intuitive and engaging user interface. Existing virtual reality based visualization systems for human anatomy are based on 3D surface and volumetric models and simulative systems based on model libraries. The visual impact as well as facilitation for learning are inadequate in such systems. This thesis research is aimed at eliminating such inadequacies by developing a non-immersive virtual reality system framework for storage, access and navigation of real human cadaveric data. Based on this framework, a real time software system called virtual cadaver navigation system (VCNS) is developed, that can be used as an aid for teaching human anatomy. The hardware components of the system include, a mannequin, an examination probe similar to a medical ultrasound probe, and a personal computer. The examination probe is moved over the mannequin to obtain the virtual tomographic slice from the real cadaveric3-D volume data. A 3-D binary space partitioning tree structure is defined to organize the entire volumetric data, by subdividing it into small blocks of predefined size, called as bricks that are assigned a unique address for identification. As the examination probe is moved over the mannequin, the set of bricks intersecting the corresponding tomographic slice are determined by traversing the tree structure, and only, the selected bricks are accessed from the main memory and brought into the texture memory on the graphics accelerator card for visualization. The texture memory in the graphics card and the main memory are divided into slots of size, that is a multiple of the brick size, and a tagging scheme that relates the brick addresses, texture memory slots, and the main memory blocks is developed. Based on spatial, temporal and sequential locality of reference, only the currently required bricks as well as some of the neighboring bricks are loaded from the main memory into the texture memory, in order to maintain the highest frame rates required forreal time visualization. The above framework consisting of the data organization and the access mechanism are critical in terms of achieving the interactive frame rates required for real-time visualization. The input data to the system consists of non-segmented voxel data, and the data segmented and labelled based on tissue classification. The software system includes a labeling tool, in order to display the specific tissue information at the the location of the mouse cursor. This facility is useful in both teaching anatomy and self learning. Thus, the proposed VCNS system supports efficient navigation through the human body for learning anatomy and provides the knowledge of spatial locations and the interrelationship among the various organs of the body. A prototype software system has been developed, which is capable of achieving a throughput of 30 frames per second and has been tested with a 18-Gigabyte human cadaveric data obtained from the National Library of Medicine, on a personal computer with 64 Megabytes of texture memory and 512 Megabytes of main memory.
14

"Rendering híbrido: mapeamento de volumes sobre superfícies" / Hybrid rendering: mapping volume on surfaces

Danilo Medeiros Eler 27 April 2006 (has links)
Algoritmos para rendering de superfícies são rápidos, mas não são compatíveis com situações em que é necessário investigar estruturas internas em volumes. Algoritmos de rendering volumétrico direto são adequados para a exploração de estruturas volumétricas, mas são lentos quando comparados a um rendering de superfícies. Várias soluções híbridas foram propostas na literatura, sendo que uma delas, conhecida como VoS (Volume on Surface), foi proposta recentemente com o objetivo de aumentar a capacidade de investigação do conteúdo de volumes por meio de superfícies. VoS é uma técnica híbrida que permite mapear o conteúdo de um volume em superfícies extraídas do mesmo. A técnica executa lançamento de raios para mapear as informações do volume na superfície, possibilitando a visualização das estruturas internas do volume utilizando rendering de superfícies convencional. No presente trabalho estudamos a técnica VoS e propomos diversas modificações com o intuito de generalizar a técnica e tratar algumas de suas limitações. As novas soluções apresentadas permitem a utilização da técnica com volumes de voxels regulares, e geram imagens de melhor qualidade. Assim como a VoS, as duas novas versões implementadas, VoSm e VoSm*, têm o objetivo de melhorar o poder de investigação do rendering de superfícies, permitindo a exploração do conteúdo de volumes. A técnica VoS e suas variações oferecem uma ferramenta alternativa para aplicações em que a utilização de superfícies é uma solução natural. / Surface rendering algorithms are fast, but are not suitable in situations where internal volume structures must be displayed for investigation. On the other hand, Direct Volume Rendering algorithms are effective to support exploration of internal volume structures, but software implementations are slow as compared to surface rendering solutions. Several hybrid solutions have been proposed in the literature. One of such hybrid solutions, named as VoS (Volume on Surface), has been recently introduced with the goal of using surfaces to enhance volume investigation capability. VoS is a hybrid technique that maps volume contents to surfaces extracted from this volume. The technique performs ray casting to map the volume information onto the surface, thus enabling the visualization of internal volume structures using standard surface rendering algorithms. In this work we study the VoS technique and propose several modifications in order to generalize the technique and treat some of its limitations. The new solutions presented here enable applying the technique to volumes described as a regular grid of voxels and produce images of superior quality as compared to the original. As with VoS, the two novel implementations, VoSm and VoSm*, have the goal of improving the investigative power of a surface rendering display, supporting exploration of volumetric contents. VoS and its variations are alternative tools for applications where surface rendering is a natural visualization solution.
15

Interactive Volume Rendering For Medical Images

Orhun, Koray 01 September 2004 (has links) (PDF)
Volume rendering is one of the branches of scientific visualization. Its popularity has grown in the recent years, and due to the increase in the computation speed of the graphics hardware of the desktop systems, became more and more accessible. Visualizing volumetric datasets using volume rendering technique requires a large amount of trilinear interpolation operations that are computationally expensive. This situation used to restrict volume rendering methods to be used only in high-end graphics workstations or with special-purpose hardware. In this thesis, an application tool has been developed using hardware accelerated volume rendering techniques on commercial graphics processing devices. This implementation has been developed with a 3D texture based approach using bump mapping for building an illumination model with OpenGL API. The aim of this work is to propose visualization methods and tools for rendering medical image datasets at interactive rates. The methods and tool are validated and compared with a commercially available software.
16

Direct volume illustration for cardiac applications

Mueller, Daniel C. January 2008 (has links)
To aid diagnosis, treatment planning, and patient education, clinicians require tools to anal- yse and explore the increasingly large three-dimensional (3-D) datasets generated by modern medical scanners. Direct volume rendering is one such tool finding favour with radiologists and surgeons for its photorealistic representation. More recently, volume illustration — or non-photorealistic rendering (NPR) — has begun to move beyond the mere depiction of data, borrowing concepts from illustrators to visually enhance desired information and suppress un- wanted clutter. Direct volume rendering generates images by accumulating pixel values along rays cast into a 3-D image. Transfer functions allow users to interactively assign material properties such as colour and opacity (a process known as classification). To achieve real-time framerates, the rendering must be accelerated using a technique such as 3-D texture mapping on commod- ity graphics processing units (GPUs). Unfortunately, current methods do not allow users to intuitively enhance regions of interest or suppress occluding structures. Furthermore, addi- tional scalar images describing clinically relevant measures have not been integrated into the direct rendering method. These tasks are essential for the effective exploration, analysis, and presentation of 3-D images. This body of work seeks to address the aforementioned limitations. First, to facilitate the research program, a flexible architecture for prototyping volume illustration methods is pro- posed. This program unifies a number of existing techniques into a single framework based on 3-D texture mapping, while also providing for the rapid experimentation of novel methods. Next, the prototyping environment is employed to improve an existing method—called tagged volume rendering — which restricts transfer functions to given spatial regions using a number of binary segmentations (tags). An efficient method for implementing binary tagged volume rendering is presented, along with various technical considerations for improving the classifi- cation. Finally, the concept of greyscale tags is proposed, leading to a number of novel volume visualisation techniques including position modulated classification and dynamic exploration. The novel methods proposed in this work are generic and can be employed to solve a wide range of problems. However, to demonstrate their usefulness, they are applied to a specific case study. Ischaemic heart disease, caused by narrowed coronary arteries, is a leading healthconcern in many countries including Australia. Computed tomography angiography (CTA) is an imaging modality which has the potential to allow clinicians to visualise diseased coronary arteries in their natural 3-D environment. To apply tagged volume rendering for this case study, an active contour method and minimal path extraction technique are proposed to segment the heart and arteries respectively. The resultant images provide new insight and possibilities for diagnosing and treating ischaemic heart disease.
17

Vizualizace objemových dat pomocí volume renderingu / 3D Volume Rendering Data Visualization

Němeček, Pavel January 2010 (has links)
The first part of this project is focused on theoretical analysis of methods for rendering volume data. Both methods are analyzed showing the volume data using triangle mesh, and methods for direct volume rendering. Ray Casting is presented in detail. Possible way of its realization using graphics card is the subject of implementation part. The paper presents several methods that could be applied to ray casting and achieve different results of visualization of the same data. The work also aims to create a  graphical user interface that allows interactive visualizations.

Page generated in 0.1348 seconds