• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Advanced microwave coupler design for dual-band systems.

January 2012 (has links)
在現代通信系統,無線服務的需求不斷增加,帶動了通信系統,支持多標準的操作需要。 雙波段或多波段操作幾乎都是必要的,能夠提供這些操作的微波器件已成為減小尺寸和降低成本有吸引力的解決方案。 / 分支線耦合器是用於微波和毫米波應用的最流行的無源電路之一。它們通常用於平衡放大器和混頻器去實現良好的回波損耗以及隔離。其中一個至關重要的部份是設計一個可以靈活作多波段分配的分支線耦合器。 / 傳統上,完全平面的實施,雙波段分支線耦合器可以通過短截線,階梯阻抗線,耦合線等不同的分佈式結構實現。不同的設計方案已在這幾年來出現。窄帶操作和複雜的電路設計,是以前的設計的主要缺點。雖然,在理論上,多節技術可以拓寬帶寬,但它的主要缺點是電路的面積變大了及使用極端低/高傳輸線阻抗。因此,它不是一個大量和低成本生產的解決方案。 / 在這項研究中,設計了全新的並增強了性能的雙波段分支線耦合器(零分貝和三分貝的功率分裂)。這些設計能在兩個指定的頻帶有不平等的工作帶寛。通過正確選擇雙頻四分之一波長阻抗變換器的電氣長度和線路阻抗,傳輸相位斜率將能夠被控制並給出帶寬不對稱的特點,其性能可以進一步擴展,涵蓋了廣泛的應用。 / 以上所有設計都只需要單層線路版的制作及可實現的傳輸線阻抗。應用奇/偶模式分析所給出設計公式。這些設計具有低損耗,佈局靈活,緊密的尺寸大小的特性。這些設計己經使用標準微帶的結構實現其特點,其結果得到了實驗結果的進一步驗證。分支線耦合器只需要更小的節數就能實現相同的性能。 / In modern communication systems, the increasing demand for wireless services has driven the need for communication systems that support multi-standard operations. Dual-/Multi- band operation is almost a necessity and the adoption of microwave multi-band devices has become an attractive solution towards size and cost reduction of RF frontend designs. / Branch-line coupler is one of the most popular passive circuits used for microwave and millimeter-wave applications. They are commonly used in balanced amplifiers, phase-shifter, mixer and frequency multipliers for achieving good return loss, as well as isolation. It is therefore essential to have a branch-line coupler with multi-band operation. / Traditionally, for fully planar implementation, the construction of dual-band branch-line couplers are usually accomplished by distributed structures based upon shunt-stub, stepped-impedance line, coupled line etc. Narrow-band operation and circuit complexity are the major drawbacks for these previous designs. Although, in theory, the available bandwidth may be broadened by multi-section configurations, its major tradeoffs are the enlarged circuit size as well as the extreme line dimensions involved. Therefore, it is not preferable to mass and low cost production. / In this research, advanced designs of dual-band branch-line coupler (0 dB and 3 dB power splitting) with enhanced performances are presented. By proper selection of the number of sections, electrical lengths and line impedances of appropriate branch-lines of the coupler, its performance can be further extended to cover a wide range of applications. / All the proposed circuits require only single-layer fabrication and realizable line impedance. Closed form design formulas are made available by the application of even/odd- mode formulation. They feature low loss, flexible layout and compact size. The designs have been implemented and characterized using standard microstrip, and verified experimentally. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Yeung, Sung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 92-95). / Abstracts also in Chinese. / Abstract --- p.ii / 摘要 --- p.iii / Acknowledgement --- p.iv / Table of Content --- p.v / Lists of Figures --- p.viii / Lists of Tables --- p.xii / Chapter Chapter 1 --- : Introduction --- p.1 / Chapter 1.1 --- Research Motivation and Objective --- p.1 / Chapter 1.2 --- Original Contribution --- p.3 / Chapter 1.3 --- Research Approach, Assumptions and Limitations --- p.4 / Chapter 1.4 --- Overview of the Thesis Organization --- p.5 / Chapter Chapter 2 --- : Review of Microwave Coupler Design --- p.6 / Chapter 2.1 --- Coupler Design Fundamental --- p.6 / Chapter 2.1.1 --- Coupler Design with Equal Power Splitting --- p.7 / Chapter 2.1.2 --- Coupler Design with Unequal Power Splitting --- p.12 / Chapter 2.1.3 --- 0-dB Coupler or Crossover --- p.16 / Chapter 2.1.4 --- Coupler Design with Size Miniaturization --- p.18 / Chapter 2.1.5 --- Wide Band Coupler Design --- p.21 / Chapter 2.2 --- Dual-Band and Multi-Band Branch-line Coupler --- p.25 / Chapter 2.2.1 --- Dual-Band Couplers Based on Composite Right/Left-Handed Transmission Line --- p.25 / Chapter 2.2.2 --- Dual-Band Couplers with Shunt Stubs --- p.28 / Chapter 2.2.3 --- Dual-Band Coupler Based on Stepped-Impedance-Stub-Line --- p.30 / Chapter 2.2.4 --- Dual-Band Coupler with Port Extensions --- p.33 / Chapter 2.2.5 --- Tri-Band Coupler Based on Matching Network --- p.35 / Chapter 2.2.6 --- Multi-passband Branch-line Coupler Design --- p.37 / Chapter 2.3 --- Summary --- p.39 / Chapter Chapter 3 --- : A Novel Dual-band 0-dB Branch-line Coupler Design --- p.40 / Chapter 3.1 --- Proposed Circuit --- p.40 / Chapter 3.2 --- Analysis of Single-band 0-dB Branch-line Coupler --- p.43 / Chapter 3.3 --- Single- to Dual-band Conversion --- p.52 / Chapter 3.4 --- Experimental Results --- p.55 / Chapter 3.5 --- Summary --- p.58 / Chapter Chapter 4 --- : A Novel Dual-band 3-dB Branch-line Coupler with Unequal Bandwidth --- p.59 / Chapter 4.1 --- Proposed Dual-band Impedance Transformer: --- p.59 / Chapter 4.2 --- Single-band 3-dB Coupler Design --- p.65 / Chapter 4.3 --- Dual-band 3-dB Coupler Design --- p.70 / Chapter 4.4 --- Experimental Results --- p.76 / Chapter 4.4.1 --- Equal bandwidth design --- p.76 / Chapter 4.4.2 --- Unequal bandwidth design --- p.78 / Chapter 4.5 --- Summary --- p.81 / Chapter Chapter 5 --- : A Novel Dual-band 0-dB Branch-line Coupler Design with Unequal Bandwidth --- p.82 / Chapter 5.1 --- Proposed Circuit --- p.82 / Chapter 5.2 --- Analysis and Formulation --- p.84 / Chapter 5.3 --- Simulation Results --- p.85 / Chapter 5.4 --- Experimental Results --- p.87 / Chapter 5.5 --- Summary --- p.89 / Chapter Chapter 6 --- : Conclusion and Recommendation for Future Work --- p.90 / Chapter 6.1 --- Conclusion --- p.90 / Chapter 6.2 --- Recommendation for future work --- p.91 / References --- p.92 / Author’s Publications --- p.96 / Chapter Appendix 1: --- Brief Summary of Design Approaches of Hybrids Couplers --- p.97 / Chapter Appendix 2: --- Transformation between S- and ABCD- parameters for two-port network --- p.99
12

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Abdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modided gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz. As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
13

Design of Tunable/Reconfigurable and Compact Microwave Devices

Zhou, Mi 05 1900 (has links)
With the rapid development of the modern technology, radio frequency and microwave systems are playing more and more important roles. Since the time the first microwave device was invented, they have been leading not only the military but also our daily life to a new era. In order to make the devices have more practical applications, more and more strict requirements have been imposed. For example, good adaptability, reduced cost and shrank size are highly required. In this thesis, three devices are designed based on this requirement. At first, a symmetric four-port microwave varactor based 90-degree directional coupler with tunable coupling ratios and reconfigurable responses is presented. The proposed coupler is designed based on the modified structure of a crossover, where varactors are loaded. Then, a novel reconfigurable 3-dB directional coupler is presented. Varactors and inductors are loaded to the device to realize the reconfigurable performance. By adjusting the voltage applied to the varactors, the proposed coupler can be reconfigured from a branch-line coupler (90-degree coupler) to a rat-race coupler (180 degree coupler) and vice versa. At last, two types (Type-I and Type-II) of microwave baluns with generalized structures are presented. Different from the conventional transmission-line-based baluns where λ/2 transmission lines or λ/4 coupled lines are used, the proposed baluns are constructed by transmission lines with arbitrary electrical lengths.
14

Characterizations and design of planar optical waveguides and directional couplers by two-step K+ -Na+ ion-exchange in glass

Albert, Jacques January 1987 (has links)
Planar optical waveguides fabricated by K$ sp+$-Na$ sp+$ ion-exchange in soda-lime glass substrates are investigated. / Experimental characterizations of planar waveguide with respect to a wide range of fabrication conditions have been carried out, including detailed measurements of the refractive index anisotropy resulting from the large induced surface stresses. / Parallel to this, the non-linear diffusion process of ion-exchange was simulated numerically to provide, along with the results of the characterizations, a complete description of the refractive index profile from any set of fabrication conditions. / The magnitude of the maximum surface index change observed was shown theoretically to be almost entirely due to the induced stress at the surface of the substrate, arising from the presence of the larger potassium ions. / Finally, a novel class of single-mode channel waveguides, made by a "two-step" ion-exchange was analyzed. A simple model for these waveguides was developed and used in the design of two directional coupler structures which were fabricated and measured. / The two-step process was conceived because it relaxes waveguides' dimensional control, yielding single-mode guides of larger size, better suited for low-loss connections to optical fibers. It also provides an additional degree of freedom to adjust device properties.
15

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Abdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modided gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz. As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
16

Analysis of linear and nonlinear coupled dielectric waveguides /

Chang, Hosung. January 1993 (has links)
Thesis (Ph. D.)--Oregon State University, 1993. / Typescript (photocopy). Includes bibliographical references (leaves 102-110). Also available on the World Wide Web.
17

Koplanární směrové vazební a hybridní členy / Coplanar directional and hybrid couplers

Žabokrtský, Michal January 2010 (has links)
This thesis deals with coplanar directional and hybrid couplers. Firstly, the thesis describes the theory of hybrid microwave integrated circuits with their advantages and disadvantages in comparison with other types of microwave circuits. Next, the thesis deals with basic microstrips and individual types of coplanar strips and waveguides are also more closely analyzed. The thesis also explains a theory of directional and hybrid couplers and analyses particular kinds of directionality and attributes of the real directional couplers. The following chapter shows a method of design of a few coplanar directional coupler types. Attributes of the types are then verified in CST Microwave Studio. The last chapter includes measured parameters of the couplers and their comparison with the theoretical values from the previous part. The next aim of the thesis is to create laboratory tasks which deals with coplanar directional couplers. The laboratory task is found in the appendix.
18

Characterizations and design of planar optical waveguides and directional couplers by two-step K+ -Na+ ion-exchange in glass

Albert, Jacques January 1987 (has links)
No description available.
19

Analysis Of Coupled Lines In Microwave Printed Circuit Elements

Ozkal Piroglu, Sefika 01 December 2007 (has links) (PDF)
Full wave analysis of microstrip lines at microwave frequencies is performed by using method of moments in conjunction with closed-form spatial domain Green&rsquo / s functions. The Green&rsquo / s functions are in general Sommerfeld-type integrals which are computationally expensive. To improve the efficiency of the technique, Green&rsquo / s functions are approximated by their closed-forms. Microstrip lines are excited by arbitrarily located current sources and are terminated by complex loads at both ends. Current distributions over microstrip lines are represented by rooftop basis functions. At first step, the current distribution over a single microstrip line is calculated. Next, the calculation of the current distributions over coupled microstrip lines is performed. The technique is then, applied to directional couplers. Using the current distributions obtained by the analysis, the scattering parameters of the structures are evaluated by using Prony&rsquo / s method. The results are compared with the ones gathered by using simulation software tools, CNL/2&trade / and Agilent Advanced Design System&trade / (ADS).
20

Microwave aerial and waveguide system for an airborne continuous-wave Doppler navigation equipment

Crompton, James Woodhouse. January 1900 (has links) (PDF)
Thesis, (M.E.?)-- University of Adelaide, Dept. of Engineering, 1958. / Typewritten.

Page generated in 0.2462 seconds