• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rip current spacing in relation to wave energetics and directional spreading

Holt, Robert D. 06 1900 (has links)
Approved for public release, distribution is unlimited / Rip current spacings are compared with wave energetics and directional spreading in the Southern Monterey Bay. Southern Monterey Bay affords a unique environment to study rip currents owing to their prevalence created by near-normally incident waves on a sandy shoreline. It is hypothesized that rip current spacing is a function of wave directional spreading and energy flux, based on the morphodynamic modeling by Reniers et al. 2003. A gradient of wave energy flux exists due to headlands and refraction over Monterey Canyon. Rip currents are shown to occur between cusps in the shoreline, allowing cusp spacing to be a surrogate for rip spacing. Rip current spacing was inferred from beach morphology surveys, LIDAR imagery, and Argus cameras, and found to be O(150m) at Sand City and O(300m) at Marina, separated by 6km . Measured waves during a two month period using wave-rider buoys, show a gradient of across-shore energy flux between Sand City, 2 28000( / ) F Jm x . , and Marina, 2 33000( / ) F Jm x . . The two sites have the same peak directional spreading of energy value, 14 peak ̤= o , and slightly different bulk values for Sand City, 18 bulk ̤= o , and Marina, 20 bulk ̤= o . Therefore, the variations in rip current spacing could not be attributed to directional spreading but appear related to variations in energy flux. / Ensign, United States Naval Reserve
2

Analysis of laboratory and field measurements of directionally spread nonlinear ocean waves

McAllister, Mark Laing January 2017 (has links)
Surface gravity waves exist in the oceans as multi-directional nonlinear phenomena. Understanding how these two properties interact is intrinsically important in itself. Furthermore, an understanding of this relationship may be used to gain insight into other oceanic phenomena. This thesis first describes an experimental investigation into the relationship between directionality and non-linearity (Part I). This relationship was then used as a tool to estimate the directional spreading of field data (Part II). Experiments have been conducted in which directionally spread focused wave groups were created in a wave tank. The relationship between the degree of directional spreading and the second-order bound harmonics of the wave groups was examined, in particular the formation of a `set-up'. These measurements were then compared to predictions from second-order theories, finding good agreement. The two-dimensional structure of the bound waves was explored giving new insight into the underlying physics. Experiments were then carried out for directionally spread crossing wave groups. It is believed that the crossing of two sufficiently separated wave groups may be the cause of an anomalous set-up in the second-order bound waves observed for some extreme and potentially freak waves. This set-up is reproduced experimentally. Again, the results of these test agreed very well when compared to second-order theory. The insight gained from the foregoing experiments was then utilised in the analysis of field data. A method, which requires only a single measurement to estimate the observed degree of directional spreading, was applied to a large dataset of field measurements from the North Alwyn platform in the North Sea. This method was then compared to conventional approaches, which require multiple concurrent measurements. The method that requires only a single measurement was shown to be effective, and presents a promising approach to gaining additional insight about the directional spreading of point observations.

Page generated in 0.1361 seconds