Spelling suggestions: "subject:"dirichlet problem."" "subject:"irichlet problem.""
21 |
Degeneration of boundary layer at singular pointsDyachenko, Evgueniya, Tarkhanov, Nikolai January 2012 (has links)
We study the Dirichlet problem in a bounded plane domain for the heat
equation with small parameter multiplying the derivative in t. The behaviour of solution at characteristic points of the boundary is of special interest.
The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least 2. We allow the boundary to not only have contact of degree less than 2 with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.
|
22 |
Some remarks on certain parabolic differential operators over non-cylindrical domains /Rivera Noriega, Jorge, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 104-109). Also available on the Internet.
|
23 |
Some remarks on certain parabolic differential operators over non-cylindrical domainsRivera Noriega, Jorge, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 104-109). Also available on the Internet.
|
24 |
Theory and Applications of the LaplacianFleischer, Daniel. January 2007 (has links)
Konstanz, Univ., Diss., 2007.
|
25 |
An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalue /Haile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
|
26 |
An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalueHaile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
|
27 |
Die Dirichletsche Aussenraumaufgabe zu elleptischen [sic] Differentialgleichungen vierter Ordnung und das Prinzip der eindeutigen FortsetzbarkeitTeschke, Helmut. January 1973 (has links)
Originally presented as the author's thesis, Bonn. / Added t.p. with thesis statement inserted. Bibliography: p. 78-80.
|
28 |
A posteriori error estimators based on duality techniques from the calculus of variationsBuß, Hinderk. Unknown Date (has links) (PDF)
University, Diss., 2003--Heidelberg.
|
29 |
Autovalores em variedades Riemannianas completasBohrer, Matheus January 2017 (has links)
O objetivo desta dissertação é estudar o problema de autovalor de Dirichlet para variedades riemannianas completas. Mais precisamente, pretendemos estudar uma cota por baixo para o -ésimo autovalor de um domínio limitado em uma variedade riemanniana completa. Tal cota é obtida fazendo-se uso de uma fórmula de recorrência de Cheng e Yang e um teorema de Nash. Ademais, pretendemos estudar uma desigualdade universal para os autovalores no espaço hiperbólico. / The goal of this dissertation is to study the Dirichlet eigenvalue problem for a complete riemannian manifold. More accurately, we intend to investigate a lower-bound for the -ℎ eigenvalue on a bounded domain in a complete riemannian manifold. Such a bound is obtained by making use of a recursion formula of Cheng and Yang and Nash’s Theorem. Furthermore, we study a universal inequality for eigenvalues of the Dirichlet eigenvalue problem on a bounded domain in a hyperbolic space (−1).
|
30 |
Autovalores em variedades Riemannianas completasBohrer, Matheus January 2017 (has links)
O objetivo desta dissertação é estudar o problema de autovalor de Dirichlet para variedades riemannianas completas. Mais precisamente, pretendemos estudar uma cota por baixo para o -ésimo autovalor de um domínio limitado em uma variedade riemanniana completa. Tal cota é obtida fazendo-se uso de uma fórmula de recorrência de Cheng e Yang e um teorema de Nash. Ademais, pretendemos estudar uma desigualdade universal para os autovalores no espaço hiperbólico. / The goal of this dissertation is to study the Dirichlet eigenvalue problem for a complete riemannian manifold. More accurately, we intend to investigate a lower-bound for the -ℎ eigenvalue on a bounded domain in a complete riemannian manifold. Such a bound is obtained by making use of a recursion formula of Cheng and Yang and Nash’s Theorem. Furthermore, we study a universal inequality for eigenvalues of the Dirichlet eigenvalue problem on a bounded domain in a hyperbolic space (−1).
|
Page generated in 0.0649 seconds