• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Connes-Moscovici local index theorem for the non commutative 2-torus and the meromorphic extendibility of certain Dirichlet series

Fahrenwaldt, Matthias. January 2002 (has links)
Münster (Westfalen), University, Diss., 2002.
2

Discrete Moments of Zeta-Functions with respect to random and ergodic transformations / Diskrete Momente von Zetafunktionen mit zufälligen und ergodentheoretischen Transformationen

Srichan, Teerapat January 2015 (has links) (PDF)
In the thesis discrete moments of the Riemann zeta-function and allied Dirichlet series are studied. In the first part the asymptotic value-distribution of zeta-functions is studied where the samples are taken from a Cauchy random walk on a vertical line inside the critical strip. Building on techniques by Lifshits and Weber analogous results for the Hurwitz zeta-function are derived. Using Atkinson’s dissection this is even generalized to Dirichlet L-functions associated with a primitive character. Both results indicate that the expectation value equals one which shows that the values of these zeta-function are small on average. The second part deals with the logarithmic derivative of the Riemann zeta-function on vertical lines and here the samples are with respect to an explicit ergodic transformation. Extending work of Steuding, discrete moments are evaluated and an equivalent formulation for the Riemann Hypothesis in terms of ergodic theory is obtained. In the third and last part of the thesis, the phenomenon of universality with respect to stochastic processes is studied. It is shown that certain random shifts of the zeta-function can approximate non-vanishing analytic target functions as good as we please. This result relies on Voronin's universality theorem. / Die Dissertation behandelt diskrete Momente der Riemannschen Zetafunktion und verwandter Dirichletreihen. Im ersten Teil wird die asymptotische Werteverteilung von Zetafunktionen studiert, wobei die Werte zufällig auf einer vertikalen Geraden im kritischen Streifen gemäß einer Cauchyschen Irrfahrt summiert werden. Auf einer Vorarbeit von Lifshits und Weber aufbauend werden analoge Resultate für die Hurwitz Zetafunktion erzielt. Mit Hilfe der Atkinsonschen Formel gelingt eine weitere Verallgemeinerung für Dirichletsche L-Funktion zu einem primitiven Charakter. Beide Ergebnisse zeigen, dass der Erwartungswert stets eins beträgt, womit die jeweilige Zetafunktion im Mittel betragsmäßig klein ist. Der zweite Teil befasst sich mit der logarithmischen Ableitung der Riemannschen Zetafunktion auf vertikalen Geraden, wobei hier die Werte einer ergodischen Transformation entstammen. Eine Arbeit von Steuding verallgemeinernd werden diskrete Momente berechnet und eine äquivalente Formulierung der Riemannschen Vermutung in ergodentheoretischer Sprache erzielt. Im dritten und letzten Teil der Dissertation wird das Phänomen der Universalität unter dem Aspekt stochastischer Prozesse studiert. Es wird gezeigt, dass gewisse zufällige Translate der Zetafunktion nullstellenfreie analytische Zielfunktionen beliebig gut approximieren. Dieses Ergebnis basiert auf dem Voroninschen Universalitätssatz.
3

Allgemeine Dirichletreihen und Primzahlverteilung in arithmetischen Halbgruppen

Bekehermes, Tobias. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Clausthal.
4

Universality and Hypertranscendence of Zeta-Functions / Universalität und Hypertranszendenz von Zetafunktionen

Sourmelidis, Athanasios January 2020 (has links) (PDF)
The starting point of the thesis is the {\it universality} property of the Riemann Zeta-function $\zeta(s)$ which was proved by Voronin in 1975: {\it Given a positive number $\varepsilon>0$ and an analytic non-vanishing function $f$ defined on a compact subset $\mathcal{K}$ of the strip $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ with connected complement, there exists a real number $\tau$ such that \begin{align}\label{continuous} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon. \end{align} } In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as {\it discrete universality theorem} for $\zeta(s)$: {\it If $\mathcal{K}$, $f$ and $\varepsilon$ are as before, then \begin{align}\label{discretee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0, \end{align} where $\Delta$ is an arbitrary but fixed positive number. } We aim at developing a theory which can be applied to prove the majority of all so far existing discrete universality theorems in the case of Dirichlet $L$-functions $L(s,\chi)$ and Hurwitz zeta-functions $\zeta(s;\alpha)$, where $\chi$ is a Dirichlet character and $\alpha\in(0,1]$, respectively. Both of the aforementioned classes of functions are generalizations of $\zeta(s)$, since $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, where $\chi_0$ is the principal Dirichlet character mod 1. Amongst others, we prove statement (2) where instead of $\zeta(s)$ we have $L(s,\chi)$ for some Dirichlet character $\chi$ or $\zeta(s;\alpha)$ for some transcendental or rational number $\alpha\in(0,1]$, and instead of $(\Delta n)_{n\in\mathbb{N}}$ we can have: \begin{enumerate} \item \textit{Beatty sequences,} \item \textit{sequences of ordinates of $c$-points of zeta-functions from the Selberg class,} \item \textit{sequences which are generated by polynomials.} \end{enumerate} In all the preceding cases, the notion of {\it uniformly distributed sequences} plays an important role and we draw attention to it wherever we can. Moreover, for the case of polynomials, we employ more advanced techniques from Analytic Number Theory such as bounds of exponential sums and zero-density estimates for Dirichlet $L$-functions. This will allow us to prove the existence of discrete second moments of $L(s,\chi)$ and $\zeta(s;\alpha)$ on the left of the vertical line $1+i\mathbb{R}$, with respect to polynomials. In the case of the Hurwitz Zeta-function $\zeta(s;\alpha)$, where $\alpha$ is transcendental or rational but not equal to $1/2$ or 1, the target function $f$ in (1) or (2), where $\zeta(\cdot)$ is replaced by $\zeta(\cdot;\alpha)$, is also allowed to have zeros. Until recently there was no result regarding the universality of $\zeta(s;\alpha)$ in the literature whenever $\alpha$ is an algebraic irrational. In the second half of the thesis, we prove that a weak version of statement \eqref{continuous} for $\zeta(s;\alpha)$ holds for all but finitely many algebraic irrational $\alpha$ in $[A,1]$, where $A\in(0,1]$ is an arbitrary but fixed real number. Lastly, we prove that the ordinary Dirichlet series $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ and $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ are hypertranscendental, where $f:\mathbb{N}\to\mathbb{C}$ is a {\it Besicovitch almost periodic arithmetical function}, $\alpha,\beta>0$ are such that $\lfloor\alpha+\beta\rfloor>1$ and $P\in\mathbb{Z}[X]$ is such that $P(\mathbb{N})\subseteq\mathbb{N}$. / Der Ausgangspunkt dieser Dissertation ist die folgende {\it Universalit\"atseigenschaft} der Riemannschen Zetafunktion $\zeta(s)$, die von Voronin 1975 nachgewiesen wurde: {\it Zu gegebenem $\varepsilon>0$ und einer analytischen nullstellenfreien Funktion $f$, die auf einer kompakten Teilmenge $\mathcal{K}$ des Streifens $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ mit zusammenh\"angendem Komplement definiert ist, existiert eine reelle Zahl $\tau$, so dass \begin{align}\label{continuouus} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon.\tag*{(1)} \end{align} } Im Jahr 1980 bewies Reich folgendes diskrete Analogon des Voroninschen Satzes, welches auch als {\it diskretes Universalit\"atstheorem} f\"ur $\zeta(s)$ bekannt ist: {\it Sind $\mathcal{K}$, $f$ und $\varepsilon$ wie oben, so gilt \begin{align}\label{discreteeee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0,\tag*{(2)} \end{align} wobei $\Delta$ eine beliebige, aber fest gew\"ahlte positive reelle Zahl bezeichnet. } Unser Ziel ist die Entwicklung einer Theorie, welche die Mehrheit der bislang bewiesenen diskreten Universalit\"atstheoreme im Fall Dirichletscher $L$-Funktionen $L(s,\chi)$ und Hurwitzscher Zetafunktionen $\zeta(s;\alpha)$ (wobei $\chi$ ein Dirichlet-Charakter ist und $\alpha\in(0,1]$) umfasst. Beide genannten Funktionenklassen verallgemeinern $\zeta(s)$, denn $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, wobei $\chi_0$ der Hauptcharakter modulo 1 ist. Neben anderen Resultaten beweisen wir Aussage (2) mit $L(s,\chi)$ f\"ur einen beliebigen Dirichlet-Charakter $\chi$ bzw. $\zeta(s;\alpha)$ f\"ur ein transzendentes oder rationales $\alpha\in(0,1]$ anstelle von $\zeta(s)$ sowie $(\Delta n)_{n\in\mathbb{N}}$ ersetzt durch eine der nachstehenden Folgen: \begin{enumerate} \item \textit{Beatty-Folgen,} \item \textit{Folgen von Imagin\"arteilen der $c$-Punkte einer beliebigen Zetafunktion der Selbergklasse,} \item \textit{Folgen, die durch ein Polynom generiert werden.} \end{enumerate} In all diesen F\"allen spielt der Begriff einer {\it gleichverteilten Folge} eine wichtige Rolle, und wir schenken diesem Aspekt besondere Beachtung im Folgenden. Speziell f\"ur den Fall der Polynome benutzen wir weitere fortgeschrittene Techniken der Analytischen Zahlentheorie, wie besipielsweise Schranken f\"ur Exponentialsummen und Nullstellen-Dichtigkeitsabsch\"atzungen f\"ur Dirichletsche $L$-Funktionen. Dies erlaubt uns, die Existenz gewisser diskreter quadratischer Momente f\"ur $L(s,\chi)$ und $\zeta(s;\alpha)$ links der vertikalen Geraden $1+i\mathbb{R}$ im Polynom-Fall zu beweisen. Im Fall der Hurwitzschen Zetafunktion $\zeta(s;\alpha)$, wobei $\alpha$ transzendent oder rational, aber ungleich $1/2$ oder 1 ist, kann die zu approximierende Funktion $f$ in (1) oder (2), wobei $\zeta(\cdot)$ durch $\zeta(\cdot;\alpha)$ zu ersetzen ist, sogar Nullstellen besitzen. Bis vor kurzem waren hinsichtlich der Universalit\"at von $\zeta(s;\alpha)$ in der Literatur f\"ur algebraisch-irrationale $\alpha$ keine Ergebnisse erzielt worden. Im zweiten Teil der Dissertation beweisen wir eine schwache Version der Aussage \eqref{continuous} f\"ur $\zeta(s;\alpha)$ f\"ur alle algebraisch-irrationalen $\alpha\in[A,1]$ bis auf h\"ochstens endlich viele Ausnahmen, wobei $A\in(0,1]$ eine beliebige, aber fest gew\"ahlte reelle Zahl ist. Schlie\ss{}lich weisen wir die Hypertranszendenz der gew\"ohnlichen Dirichlet-Reihen $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ und $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ nach, wobei $f:\mathbb{N}\to\mathbb{C}$ irgendeine {\it Besicovitch-fastperiodische zahlentheoretische Funktion} ist, $\alpha,\beta>0$ der Ungleichung $\lfloor\alpha+\beta\rfloor>1$ gen\"ugt und $P\in\mathbb{Z}[X]$ die Bedingung $P(\mathbb{N})\subseteq\mathbb{N}$ erf\"ullt.

Page generated in 0.035 seconds