• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nonpoint-Source Pollutants to Determine Runoff Source Areas

Lane, L. J., Norton, H. L., Wallace, D. E., Wilson, R. E., Martin, R. D. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / Hydrologic information is needed to understand and control water pollution from semiarid rangelands. However, the hydrologic systems under any given conditions must be understood and the effects of various land uses predicted. Based on the concept of partial area response, a runoff tracer study was conducted on two small watersheds. The watersheds were partitioned into four geomorphic subzones or hydrologic response units. Each of the four zones on both watersheds was treated with about 1 kg/ha of an individual water soluble herbicide. Runoff volumes and sources estimated using the tracers were consistent with results from simulation studies. Also, the principle of corresponding runoff and pollutant discharge rates was used to develop two methods of runoff hydrograph estimation from each of the geomorphic subzones. Method 1 matched the mean total concentration and total runoff volume. Method 2 matched the instantaneous total concentration and the instantaneous runoff rate from the entire watershed. Results from the two methods suggested that, although they may be equivalent with respect to runoff volume, Method 2 may be more consistent with respect to peak discharge.
12

Acoustic noise emitted from overhead line conductors

Li, Qi January 2013 (has links)
The developments of new types of conductors and increase of voltage level have driven the need to carry out research on evaluating overhead line acoustic noise. The surface potential gradient of a conductor is a critical design parameter for planning overhead lines, as it determines the level of corona loss (CL), radio interference (RI), and audible noise (AN). The majority of existing models for surface gradient calculation are based on analytical methods which restrict their application in simulating complex surface geometries. This thesis proposes a novel method which utilizes both analytical and numerical procedures to predict the surface gradient. Stranding shape, proximity of tower, protrusions and bundle arrangements are considered within this model. One of UK National Grid's transmission line configurations has been selected as an example to compare the results for different methods. The different stranding shapes are a key variable in determining dry surface fields. The dynamic behaviour of water droplets subject to AC electric fields is investigated by experiment and finite element modelling. The motion of a water droplet is considered on the surface of a metallic sphere. To understand the consequences of vibration, the FEA model is introduced to study the dynamics of a single droplet in terms of phase shift between vibration and exciting voltage. Moreover, the evolution of electric field within the whole cycle of vibration is investigated. The profile of the electric field and the characteristics of mechanical vibration are evaluated. Surprisingly the phase shift between these characteristics results in the maximum field occurring when the droplet is in a flattened profile rather than when it is ‘pointed’.Research work on audible noise emitted from overhead line conductors is reviewed, and a unique experimental set up employing a semi-anechoic chamber and corona cage is described. Acoustically, this facility isolates undesirable background noise and provides a free-field test space inside the anechoic chamber. Electrically, the corona cage simulates a 3 m section of 400 kV overhead line conductors by achieving the equivalent surface gradient. UV imaging, acoustic measurements and a partial discharge detection system are employed as instrumentation. The acoustic and electrical performance is demonstrated through a series of experiments. Results are discussed, and the mechanisms for acoustic noise are considered. A strategy for evaluating the noise emission level for overhead line conductors is developed. Comments are made on predicting acoustic noise from overhead lines. The technical achievements of this thesis are summarized in three aspects. First of all, an FEA model is developed to calculate the surface electric field for overhead line conductors and this has been demonstrated as an efficient tool for power utilities in computing surface electric field especially for dry condition. The second achievement is the droplet vibration study which describes the droplets' behaviour under rain conditions, such as the phase shift between the voltage and the vibration magnitude, the ejection phenomena and the electric field enhancement due to the shape change of droplets. The third contribution is the development of a standardized procedure in assessing noise emission level and the characteristics of noise emissions for various types of existing conductors in National Grid.

Page generated in 0.0986 seconds