Spelling suggestions: "subject:"discrete conformal eometry"" "subject:"discrete conformal ceometry""
1 |
Computational Circle Packing: Geometry and Discrete Analytic Function TheoryOrick, Gerald Lee 01 May 2010 (has links)
Geometric Circle Packings are of interest not only for their aesthetic appeal but also their relation to discrete analytic function theory. This thesis presents new computational methods which enable additional practical applications for circle packing geometry along with providing a new discrete analytic interpretation of the classical Schwarzian derivative and traditional univalence criterion of classical analytic function theory. To this end I present a new method of computing the maximal packing and solving the circle packing layout problem for a simplicial 2-complex along with additional geometric variants and applications. This thesis also presents a geometric discrete Schwarzian quantity whose value is associated with the classical Schwarzian derivative. Following Hille, I present a characterization of circle packings as the ratio of two linearly independent solutions of a discrete difference equation taking the discrete Schwarzian as a parameter. This characterization then gives a discrete interpretation of the classical univalence criterion of Nehari in the circle packing setting.
|
2 |
Domain filling circle packingsKrieg, David 21 January 2019 (has links)
Verallgemeinerungen bekannter Existenz- und Eindeutigkeitsaussagen für gebietsfüllende Kreispackungen. Für jedes beschränkte, einfach zusammenhängende Gebiet und für jeden zulässigen Komplex existiert eine gebietsfüllende, verallgemeinerte Kreispackung, die einer beliebigen der folgenden Normalisierungen genügt.
alpha-beta-gamma: drei Randkreise sind je einem Randpunkt (Primende) zugeordnet
alpha-gamma: ein Kreis mit fixem Mittelpunkt und ein Randkreis mit zugeordnetem Primende
alpha-beta: zwei Kreise mit fixen Mittelpunkten
Bedingungen werden angegeben, unter welchen die aufgeführten Normalisierungen eindeutige Lösungen implizieren, welche zudem stetig von den Normalisierungsparametern abhängen. Ist der Alpha-Kreis ein innerer Kreis, dann wird gezeigt, dass die alpha-beta Normalisierung im Allg. keine Eindeutigkeit liefert. Bedingungen werden aufgeführt, die nicht-entartete Lösungen (klassische Kreispackungen) garantieren. Alle Beweise sind möglichst elementar und unabhängig von existierenden Kreispackungs-Ergebnissen. / Existing existence and uniqueness results in the field of domain filling circle packings are generalized.
For every bounded, simply connected domain, for every admissible complex, and under any of the following normalizations it is shown that there is a domain filling generalized circle packing.
alpha-beta-gamma: three boundary disks are each associated with a boundary point (prime end)
alpha-gamma: one disk with fixed center and one boundary disk with associated prime end
alpha-beta: two disks with fixed centers
Conditions are given under which the stated normalizations yield unique solutions, which then depend continuous on some normalization parameters. For the special case of an interior alpha disk it is shown that the alpha-beta normalization does not yield uniqueness in general.
Several conditions are stated that guarantee non-degenerate solutions (classical circle packings).
All proofs are kept as elementary as possible and independent of existing circle packing results.
|
Page generated in 0.053 seconds